ИНДЕКС УДК 621.181: 519.876

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГОРЕНИЯ РАСПЫЛЕННОГО УГЛЯ В ПОТОКЕ С УЧЕТОМ АБСОРБЦИИ ОКИСЛОВ СЕРЫ

Коста В. Ж.¹, Крюков В.Г.²

1 – Университет де Планалту Катариненсе (UNIPLAC), г.Лажес, Бразилия 2 – Казанский научно- исследовательский Технический Университет - КНИТУ-КАИ, Казань <u>vkrujkov @kai.ru</u>

Аннотация

В работе представлена одномерная модель горения распыленного угля. Учитывается горение в газовой фазе, испарение влаги из частиц, унос летучих веществ, горение кокса, эмиссия примесей, тепло-массоперенос между газовой и твердой фазами. Также в модель включены, блоки: впрыска воды для уменьшения температуры газовой среды и связывания серы посредством частиц CaCO₃ (процессы кальцинации и сульфатизации). Проверка модели была выполнена путем сравнения с численными и экспериментальными данными, представленными в литературе. Численные исследования выполнены для битумного и суббитумного угля. Проведен анализ процессов деволатизации (уноса летучих) и горения кокса в зависимости от температуры. Получены оценки по связыванию окислов серы частицами CaCO₃ в зависимости от расхода воды.

MATHEMATICAL MODELING OF PULVERIZED COAL COMBUSTION IN THE FLOW CONSIDERED THE ABSORPTION OF SULFUR OXIDES

The one-dimensional model of pulverized coal combustion was developed. It considers: combustion in the gaseous phase; drying of particles; devolatilization; heterogeneous combustion of char; residues emission; mass and energy transfer between gaseous and solid phases. In model was inserted too: water injection with the aim of the temperature reducing of gaseous ambient and assistant in the sulfur capture by $CaCO_3$; limestone's calcination; sulfation and reduction of $CaSO_4$. The model validation was realized through comparison with numerical and experimental data available in literature. The numeric simulations were accomplished for bituminous and subbituminous coal, analyzing the coal devolatilization and coke combustion as function of temperature. Were obtained the valuations of the sulfur capture by $CaCO_3$ dependending on the amount of water injected.

1 Введение

В настоящее время, в связи с истощением запасов нефти, в энергетике возрождается интерес к широкому использованию угля в качестве топлива. Однако при этом ужесточаются санкции за ущерб окружающей среде, вызванный индустриальными выбросами и параллельно с проблемой эффективного сжигания угля, возникает задача уменьшения эмиссии вредных веществ при его сгорании. Тем более, что уголь как топливо является объектом критики из-за большого количества продуктов пиролиза, сажи, токсичных газов (NO_x , CO, SO_x), выбрасываемых в ходе его горения. С целью их сокращения были разработаны топки горения распыленного угля в потоке со значительно сокращенным объемом вредных выбросов (NO_x и SO_x).

Типичная схема такой топки показана на рис.1 [1]. В топку в виде мелких частиц подаются уголь и карбонат кальция ($CaCO_3$), а через дно топки вводится первичный воздух, благодаря чему организуется кипящий слой. При этом основное сгорание угольных частиц осуществляется в вертикальном потоке воздуха, который уносит также $CaCO_3$. В определенном сечении подается вторичный воздух, уменьшающий температуру газов до T_g =

1100К...1600К, что позволяет уменьшить концентрацию NO_x в продуктах сгорания и "захватить" двуокись серы SO_2 частицами CaO (получающиеся в результате разложения $CaCO_3$), которые превращаются в $CaSO_4$.

Рис. 1 Схема установки для сгорания распыленного угля [1]

Частицы угля не полностью сгоревшие, зола (минеральные инертные примеси), *CaO* (не вступивший в реакцию) и *CaSO*₄ отделяются от газов в циклоне. Эти частицы попадают в "шунтирующую" камеру теплообменника, откуда они могут возвратиться в "кипящий" слой или увлекаемые вертикальным потоком воздуха попасть в камеру собственно теплообменника. Температура потока частиц, выходящих из теплообменника может контролироваться оператором для улучшения процесса горения (если новые порции угля "зажигаются" со значительным опозданием).

На рис.2 показана схема частицы угля и процессы, протекающие на ее поверхности и в пограничном слое. В ходе ее нагрева сначала происходит испарение воды, содержащейся в частице, затем образуются летучие, начинается горение углерода и образование золы. При этом также изменяется температура частицы (T_p) и ее плотность. При горении углерода образуются *CO* и *CO*₂, причем отношение между скоростями образования этих веществ

зависит от температуры T_p . Вне частицы (в газовой среде) протекают множество реакций в частности реакции сгорания летучих. Частицы могут нагреваться неравномерно, являются пористыми и несферическими. При выходе летучих размер частиц может увеличиваться. Теплообмен между частицами и газом происходит за счет теплопроводности, конвекции и радиации. Скорости выхода летучих и горения углерода существенно различны, и эти явления могут «перекрываться». Кроме того, в реагирующей системе может протекать процесс "захвата" SO_2 частицами CaO.

Рис.2. Структура угольной частицы и схема ее горения

Таким образом, очевидно, что создание математической модели реагирующего газоугольного потока является весьма сложной проблемой, и этой тематике посвящено множество публикаций. Большинство из них относится к моделированию отдельных процессов, например, образование летучих [2, 3, 4], горение углерода (кокса) [5, 6, 7, 8], испарение влаги [9, 10, 11], расширение частиц [4, 12, 13], "захват" SO_2 частицами CaO [14, 15] и т.д.

Однако рядом исследователей были созданы также и комплексные модели реагирующего газо-угольного потока. В работе [16] предлагается модель двумерного течения воздуха и частиц угля. Учитывается образование летучих (CH_4 , C_6H_6), используя подход, предложенный в статье [2]. Газовая фаза считается несжимаемой. Горение углерода на поверхности рассчитывается по формулам [17], в которых предполагается, что при его взаимодействии образуется только *CO*. Химические реакции в газовой фазе имитируются четырьмя суммарными реакциями. В модели [18] учитывается образование летучих веществ, горение углерода, распределение температуры газа и концентраций в пограничном слое вокруг частицы. В модели представлены аналитические решения, получающиеся посредством упрощения схемы процессов. Образование летучих описывается одностадийной реакцией. В модели, предложенной в работе [19], учитывается образование летучих веществ по модели [2], сгорание углерода, дисперсность частиц угля, взаимное влияние процессов в газовой фазе (где рассматривается 72 реакций) и горения частицы. Схема горения углерода является оригинальной и включает 7 стадий.

Комплексные модели, представлены также в работах [20, 21, 22, и др.]. Значительное число комплексных разработок возникло из-за сложности процессов горения угля в потоке, и, по-видимому, не скоро появится единая «всеохватывающая» модель. Поэтому разработка комплексных моделей с вовлечением новых еще не учтенных явлений (или с более

корректным представлением уже учитываемых феноменов) продолжается. В настоящей работе предлагается одна из таких моделей, особенностями которой являются возможность расчета широкого круга реагирующих систем (инвариантность модели) и учет процессов кальцинации и сульфатизации («захват» молекул SO_x частицами карбоната кальция).

В п.2 описана принятая в работе физическая схема процессов в реагирующих газоугольных потоках (набор учитываемых явлений и допущения). Система уравнений и вспомогательных соотношений математической модели представлена в п.3. Сравнение с экспериментальными данными и результаты численных исследований приводятся в п.4 (характеристики газо-угольных потоков) и в п.5 (расчеты по влиянию впрыска воды на очистку газо-угольных потоков от серосодержащих веществ).

2 Схема процессов в реагирующих газо-угольных потоках

На рис.2 и рис.3 показаны основные потоки и компоненты, включенные в физическую схему стационарного газо-угольного потока.

Рис.3. Схема ввода компонентов в реагирующий газо-угольный поток; R1-движущийся реактор

Одномерный поток воздуха и частиц *CaCO*₃ входит в канал с известными температурой $(T_g \approx 1000 \text{K})$ и расходом. Частицы угля $(T_p \approx 300 \text{K})$ внедряются в этот поток равномерно по сечению канала. Затем они нагреваются и находящаяся в них влага испаряется. При дальнейшем нагреве начинается процесс выхода летучих и горение углерода на поверхности частиц. Минеральные примеси могут фрагментарно отделяться от частицы и даже реагировать с окислителем в газовом потоке. Вокруг частицы формируется пограничный слой, через который осуществляется тепло- и массоперенос. Предполагается, что этот слой достаточно тонкий, и летучие вещества пересекают его, вступая в химическое взаимодействие с газовой фазой вне этого слоя. В тоже время кислород, достигший поверхности частицы, образует СО или СО2 непосредственно на этой поверхности, и соответствующая теплота реакции расходуется только на нагрев частицы. Частицы СаСО3 за счет нагрева превращаются в СаО, выделяют СО₂ и становятся пористыми, готовыми абсорбировать токсичный SO2 с образованием CaSO4. Однако известно, что этот процесс может протекать только в диапазоне температур газа $T_{g} = 1100K...1500K$ [23]. Для этого в некотором сечении в канал через систему инжекторов впрыскивается вода в виде мелких капель (или подается вторичный воздух), которые снижают температуру T_g до уровня необходимого для сульфатизации частиц СаО.

На основе описанной картины процессов, анализа разработок авторов [2, 6, 15, 19, 21, 23] и, учитывая необходимость создания комплексной и инвариантной модели, была разработана физическая схема, которая учитывает следующие явления:

а) химические реакции в газовой фазе в рамках формальной химической кинетики, что позволяет учитывать формирование вредных веществ *NO_x*, *SO_x*, *CO*;

б) изменение температуры и скорости газа вследствие: тепло- и массообмена с частицами угля и протекания газофазных химических реакций, впрыска воды;

в) образование летучих в зависимости от температуры T_p (модель [2]);

г) горение углерода на поверхности частицы с образованием CO и CO_2 , соотношение между которыми зависит от температуры T_p (модель [6]);

д) наличие минеральных примесей в угле и их влияние на характеристики процесса горения; е) испарение влаги, содержащейся внутри угля (модель [11]);

ж) изменение плотности частицы угля по мере выхода летучих и горения углерода[12, 13];

з) кальцинация (по модели [23])

и) сульфатизация частиц СаО (по модели [15]).

Основными допущениями принятой физической схемы являются следующие:

- частицы угля и газовая фаза имеют одинаковые скорости;

- движение газо-угольной смеси считается одномерным;

- градиенты температуры и веществ против потока – незначительны, т.е. фронт горения не образуется;

- частицы угля имеют сферическую форму;

- температура *T_p* не изменяется по радиусу частицы (но изменяется со временем);

- частицы угля не взаимодействуют между собой;

- горение угля происходит на поверхности частицы;

- толщина пограничного слоя определяется по модели "приведенной пленки" [11] с числом Нуссельта *Nu*=2;

- минеральные примеси эмитируются пропорционально степени сгорания углерода;

- капли воды, инжектируемой в продукты сгорания для снижения температуры T_g , имеют одинаковый диаметр и распределяются равномерно по сечению канала;

- давление по длине канала не меняется.

3 Математическая модель реагирующего газо-угольного потока

Модель формируется как задача Коши с известными в начальном сечении параметрами а) <u>газового потока</u> (включая частицы CaCO₃): давление (*P*); температура(T_g^0); расход на единицу площади канала (G_g^0); состав в мольных долях (r_i^0);

b) <u>частиц угля</u>:

- диаметр (d_p^0) ; расход на единицу площади канала (G_p^0) ; температура (T_p^0) ; теплотворная способность (Q_{yz}) ; плотность (ρ_p^0) ; массовые доли: влаги (g_a^0) , летучей фракции (g_v^0) , углерода (g_c^0) , примесей (g_p^0) ;

- летучие вещества (B_{iv}) и их массовые доли (g_{iv}) при эмиссии из частиц; теплота образования летучих веществ (L_v);

- углерод: энтальпия (h_c^0) ; плотность (ρ_c^0) ; принимается, что изначально углерод в частице не имеет пористости;

- компоненты минеральных примесей (B_{iR}) и их массовые доли (g_{iR}), а также энтальпия (h_R^0) и плотность (ρ_R^0);

- влага: плотность (ρ_a^0), энтальпия (h_a^0); и впрыскиваемая вода: расход на единицу площади канала (G_e^0), температура(T_e^0);

с) реагирующей среды: набор веществ и механизм элементарных химических реакций.

На основе этих данных определяются другие параметры и характеристики, необходимые для решения задачи. Например, кажущаяся начальная плотность летучей фракции (ρ_{u}^{0}) определяется из формулы:

$$\frac{g_{\nu}^{0}}{\rho_{\nu}^{0}} = \frac{1}{\rho_{p}^{0}} - \frac{g_{a}^{0}}{\rho_{a}^{0}} - \frac{g_{c}^{0}}{\rho_{c}^{0}} - \frac{g_{R}^{0}}{\rho_{R}^{0}}$$
(1)

и, если частица изначально имеет незаполненные поры, то они относятся к плотности ρ_v^0 .

По известному атомарному составу угля (легко вычисляемому по данным п. *b*)) и значению Q_{yz} несложно определить начальную энтальпию угля h_p^0 и далее энтальпию летучей фракции h_y^0 по формуле:

$$h_{\nu}^{0} = \left(h_{p}^{0} - g_{a}^{0}h_{a}^{0} - g_{c}^{0}h_{c}^{0} - g_{R}^{0}h_{R}^{0}\right) / g_{\nu}^{0}$$
⁽²⁾

Согласно рис. З охлаждающая вода впрыскивается в сечении $x = L_6$. Но для упрощения алгоритма и программы расчета мы применили прием «ее виртуального впрыска в начальном сечении канала (x = 0) ». А чтобы не исказить реальную картину процессов, на отрезке $x = 0....L_6$ принимается, что впрыскиваемая вода не взаимодействует с газовым потоком. Но, так как плотность воды более чем в 1000 раз превышает плотность газа, то загромождение сечения канала практически незаметно. А процесс «реального» испарения воды учитывается при $x \ge L_6$. В результате система уравнений при переходе через точку впрыска не меняется, область решения становиться «единственной», что значительно упрощает программу расчета.

3.1 Уравнения модели

В математической модели определим следующие величины: - расход угольных частиц на единицу площади канала:

$$G_p = m_p N_p W \tag{3}$$

где N_p – число частиц в единице объема; W – скорость потока; m_p – масса частицы; - число угольных частиц, проходящих за единицу времени через единицу площади канала:

$$N_p W = f_p = const.$$
⁽⁴⁾

- общий начальный расход газа и угля:

$$G_{\Sigma} = G_p^0 + G_g^0 = const.$$
⁽⁵⁾

- относительный расход компонентов угольных частиц: влаги

$$\overline{G}_a = \frac{f_p m_a}{G_{\Sigma}} \tag{6}$$

летучей фракции

$$\overline{G}_{v} = \frac{f_{p}m_{v}}{G_{\Sigma}}$$
(7)

углерода

$$\overline{G}_c = \frac{f_p m_c}{G_{\Sigma}}$$
(8)

примесей

www.chemphys.edu.ru/pdf/2012-11-10-001.pdf

$$\overline{G}_R = \frac{f_p m_R}{G_{\Sigma}} \tag{9}$$

- относительный расход охлаждающей воды

$$\overline{G}_{e} = \frac{G_{e}}{G_{\Sigma}} \tag{10}$$

где m_a , m_v , m_c , m_R - массы: воды, летучих, углерода, примесей в частице угля. Используя эти величины и соотношения, представленные в работах [2, 6, 11, 15, 19, 21, 23], ниже выводятся основные уравнения математической модели.

<u>Уравнение сохранения массы для всего потока</u>. Изначально это уравнение записывается в виде:

$$G_{g} + G_{p} + G_{s} = G_{p}^{0} + G_{g}^{0} + G_{s}^{0} = const.$$
 (11)

Для расхода газа имеем соотношение:

$$G_g = \rho W(1 - A_{Sp}) = \frac{P\mu_g W}{R_0 T} \left(1 - \left(\frac{G_a}{W\rho_a} + \frac{G_v}{W\rho_v} + \frac{G_c}{W\rho_c} + \frac{G_R}{W\rho_R} \right) \right)$$
(12)

где: A_{sp} - площадь, занимаемая частицами угля в поперечном сечении канала; плотность газа определяется по формуле: $\rho = P\mu_g/(R_0T)$, а средняя молекулярная масса газа по соотношению: $\mu_g = \sum \mu_i r_i$. Тогда, подставляя (12) в (11), переходя к относительным величинам, и учитывая, что:

$$\overline{G}_{p} = \overline{G}_{a} + \overline{G}_{v} + \overline{G}_{c} + \overline{G}_{R} = \sum \overline{G}_{s} \qquad (s \subset a, v, c, R)$$
(13)

получим окончательно:

$$\sum \overline{G_s} + \frac{P\mu_g}{R_0 T} \frac{W}{G_{\Sigma}} - \frac{P\mu_g}{R_0 T} \left(\sum \frac{\overline{G_s}}{\rho_s} \right) + \overline{G_e} = 1 + \overline{G_e}^0$$
(14)

Будем считать, что плотности ρ_a , ρ_v , ρ_R зависят только от температуры T_p и мало меняются. Но, согласно исследованиям ряда авторов [4, 12, 13,] частица угля при горении «набухает», в основном на стадии выхода летучих. Для учета этого эффекта (образование дополнительных пор) на основе результатов [12, 13] было предложено ввести «кажущуюся» плотность углерода (ρ_c) и соответствующее соотношение для ее изменения:

$$\rho_{c} = \rho_{c}^{0} \left[1 + k_{\rho} \left(\frac{\overline{G}_{\nu}^{0} - \overline{G}_{\nu}}{\sum \overline{G}_{s}^{0}} \right) \right]^{-3/2}$$
(15)

где: коэффициент $k_{\rho} = 6$ определяется путем аппроксимации экспериментальных данных; \overline{G}_{ν}^{0} - начальное относительное содержание летучих.

<u>Уравнение энергии для всего течения</u>. Начальная форма этого уравнения (если пренебречь радиационным теплообменом со стенкой) может быть записана в виде:

$$h_a G_a + h_v G_v + h_c G_c + h_R G_R + h_g \rho W(1 - A_{Sp}) + h_g G_g = h_p^0 G_p^0 + h_g^0 G_g^0 + h_g^0 G_g^0 = h_T$$
(16)

где: $h_a(T_p), h_v(T_p), h_c(T_p), h_R(T_p)$ - энтальпии воды, летучих, углерода, примесей, соответственно, в частице угля; h_T - энтальпия всех компонентов течения, отнесенная к единице площади канала (воздух, впрыскиваемая вода, уголь). Переходя к относительным величинам, получим окончательно:

$$\sum h_s \overline{G_s} + h_g \frac{P\mu_g}{R_0 T_g} \frac{W}{G_{\Sigma}} - h_g \frac{P\mu_g}{R_0 T_g} \left(\sum \frac{\overline{G_s}}{\rho_s} \right) + h_g \overline{G_g} = \frac{h_T}{G_{\Sigma}}$$
(17)

<u>Калорическое уравнение состояния для газа</u> связывающее температуру, состав и энтальпию газа (*h_g*) представляется в форме [24]:

$$F_{T} \equiv T_{g} - T^{ap} - \frac{\sum (h_{g} \mu_{i} - H_{i}^{ap})r_{i}}{\sum C_{pi}^{ap} r_{i}} = 0$$
(18)

где: T^{ap} , H_i^{ap} , C_{pi}^{ap} и μ_i – "опорные": температура, мольная энтальпия, мольная теплоемкость [24] и молекулярная масса *i*-го газового вещества.

<u>Уравнение для испарения влаги из частиц угля</u> описывается соотношением, аналогичным представленному в [11]:

$$\frac{dm_a}{d\tau} = \frac{D_{ef} A_p^a P \mu_a}{\delta * R_0 T_p} ln \left(1 - \frac{P_{st}(T_p)}{P} \right)$$
(19)

где δ^* - толщина приведенной пленки вокруг частицы угля ($\delta^* = R/2$, т.к. в модели принимается Nu = 2, R - радиус частицы); D_{ef} – коэффициент диффузии; A_p^a – площадь частицы угля, с которой испаряется вода; P_{st} – давление насыщенных паров.

Заменяя время τ на линейную координату, учитывая, что $A_p^a = g_a A_p$ и преобразуя уравнение (19) к относительному расходу, получим:

$$\frac{d\overline{G}_{a}}{dx} = \frac{g_{a}f_{p}}{WG_{\Sigma}} \frac{D_{ef}A_{p}P\mu_{a}}{\delta * R_{0}T_{p}} ln \left(1 - \frac{P_{st}(T_{p})}{P}\right) \equiv f_{a}$$
(20)

где A_p – площадь поверхности частицы угля; x – горизонтальная координата вдоль канала; $g_a = \overline{G}_a / (\sum \overline{G}_s)$ - массовая доля воды в частице.

<u>Уравнения расхода летучих веществ</u>. Для описания процесса выхода летучих была использована модель [2] при допущении, что общая масса летучих (m_{vo}) в угле является заданной, т.е. не зависит от температуры частицы. Это допущение вызвано тем, что при стандартной методике идентификации летучих (возгонка без доступа кислорода при T = 900K-1000K) их масса и состав характеризуется однозначно, тогда модель [2] представляется одним уравнением:

$$\frac{dm_{\nu}}{d\tau} = -(m_{\nu} + m_c)(0.4K_1 + 0.8K_2)$$
(21)

с начальным условием $m_{\nu}(\tau = 0) = m_{\nu o}$, где $K_1 = B_1 \exp(-E_1 / R_0 T_p)$ и $K_2 = B_2 \exp(-E_2 / R_0 T_p)$ - константы скорости реакций пиролиза, B_1 , B_2 , E_1 , E_2 – экспериментальные коэффициенты (их значения не зависят от типа угля). Преобразуя это уравнение к переменным, используемым в модели, получим:

эразуя это уравнение к переменным, используемым в модели, получим.

$$\frac{dG_{v}}{dx} = -\frac{(G_{v} + G_{c})}{W}(0.4K_{1} + 0.8K_{2}) \equiv f_{v}$$
(22)

Значение f_v зануляется когда $\overline{G}_v \approx 0$.

<u>Уравнение сгорания углерода в частице угля</u>. В работе [6] предложена модель горения углерода на поверхности частицы, описанная реакцией:

$$C + \left(\frac{1+\varphi}{2}\right)O_2 \to \varphi CO_2 + (1-\varphi)CO$$
⁽²³⁾

(где φ - степень образования CO_2 при горении углерода) и уравнением:

$$\frac{dm_{c}}{d\tau} = -A_{k1} \exp\left(-\frac{E_{k1}}{R_{0}T_{p}}\right) P_{O_{2}}^{0.5} A_{p}^{c}$$
(24)

где P_{O_2} - парциальное давление кислорода в газе; A_p^c - площадь, занятая углеродом на поверхности частицы; A_{k1}, E_{k1} - определенные экспериментально параметры [6].

Площадь поверхности частицы, занимаемой углеродом, определяется по формуле:

$$A_p^c = A_p V_c / V_p \tag{25}$$

а объем углерода в частице (V_c) и общий объем частицы (V_p) вычисляются по формулам:

$$V_c = \frac{m_c}{\rho_c}; \quad V_p = \sum_s \frac{m_s}{\rho_s}$$
(26)

Тогда для площади A_p^c имеем:

$$A_{p}^{c} = \left(\frac{f_{p}}{G_{\Sigma}}K_{\varepsilon}\frac{m_{c}}{\rho_{c}}\right) / \left[\left(\frac{f_{p}}{G_{\Sigma}}\right)^{\frac{2}{3}}\left(\frac{f_{p}}{G_{\Sigma}}\sum\frac{m_{s}}{\rho_{s}}\right)^{\frac{1}{3}}\right]$$
(27)

где $K_{\varepsilon} = (36\pi)^{\frac{1}{3}} / f_{\varepsilon} = 4,835976 / f_{\varepsilon}$; $f_{\varepsilon} = 0,6$ - фактор шероховатости [25]. Подставляя выражение (27) в (24), после очевидных преобразований получим:

$$\frac{d\overline{G}_{c}}{dx} = -\frac{K_{\varepsilon}}{W} P_{O_{2}}^{0.5} A_{k1} \exp\left(-\frac{E_{k1}}{R_{0}T_{p}}\right) \left(\frac{f_{p}}{G_{\Sigma}}\right)^{\frac{1}{3}} \left(\frac{\overline{G}_{c}}{\rho_{c}}\right) / \left(\sum \frac{\overline{G}_{s}}{\rho_{s}}\right)^{\frac{1}{3}}$$
(28)

Уравнение (28) учитывает, что углерод реагирует только с O_2 . Однако известно [10], что для высоких температур (~1800*K*) углерод на поверхности частицы может также взаимодействовать с CO_2 по реакции:

$$C + CO_2 \to CO + CO \tag{29}$$

Для учета этой гетерогенной реакции достаточно добавить еще одно слагаемое в уравнение (28) и тогда после несложных преобразований уравнение сгорания углерода предстанет в окончательном виде:

$$\frac{d\overline{G}_{c}}{dx} = -\frac{K_{\varepsilon}\overline{G}_{c}}{W\rho_{c}} \left(\frac{G_{\Sigma}}{f_{p}}\sum_{s}\frac{\overline{G}_{s}}{\rho_{s}}\right)^{-\frac{1}{3}} \left[P_{O_{2}}^{0,5}A_{k1}\exp\left(-\frac{E_{k1}}{R_{0}T_{p}}\right) + P_{CO_{2}}^{0,5}A_{k2}\exp\left(-\frac{E_{k2}}{R_{0}T_{p}}\right)\right] \equiv f_{c}$$
(30)

где A_{k2} , E_{k2} - экспериментальные коэффициенты, определенные в работе [10].

<u>Уравнение для степени образования *СО*₂ при горении углерода</u>. Для определения значений φ в реакции (23) используется соотношение:

$$\frac{1-\varphi}{\varphi} = A_c \exp\left(-E_c / R_0 T_p\right) \tag{31}$$

где коэффициенты A_c , E_c даны в работе [6].

<u>Уравнение расхода примесей</u>. Согласно гипотезе о выходе примесей пропорционально объемной скорости сгорания углерода можно записать уравнение массового расхода для этих примесей:

$$\frac{dm_R}{dx} = \frac{dm_c}{dx} \frac{m_R}{\rho_R} \frac{\rho_c}{m_c}$$
(32)

отсюда легко получить:

$$\frac{d\overline{G}_R}{dx} = f_c \frac{\overline{G}_R}{\overline{G}_c} \frac{\rho_c}{\rho_R} \equiv f_R$$
(33)

<u>Уравнение теплообмена для частицы угля</u>. Базовым соотношением для расчета теплообмена между частицей и газом является уравнение, приведенное в работе [19]:

$$\frac{dT_p}{d\tau} = \frac{A_p \overline{h} (T_g - T_p) - A_p \sigma \varepsilon (T_p^4 - T_w^4) + \frac{dm_v}{d\tau} L_v - (1 - \varphi) \frac{dm_c}{d\tau} \frac{\Delta H_{CO}^+}{\mu_c} - \varphi \frac{dm_c}{d\tau} \frac{\Delta H_{CO2}^+}{\mu_c}}{c_{yz} m_p}$$
(34)

где T_w – температура стенки канала; $\Delta H_{CO_2}^+$, ΔH_{CO}^+ - абсолютные значения мольных теплот образования *CO*₂ и *CO*; μ_c – молекулярная масса углерода.

Оно учитывает передачу тепла посредством конвекции и радиации, затраты энергии на выход летучих (L_v) и энергию гетерогенных реакций (23). Выполняя небольшие изменения для учета испарения воды из частиц угля (L_a – теплота испарения воды) и протекания гетерогенной реакции (29) можем записать:

$$\frac{dT_{p}}{d\tau} = \frac{A_{p}\overline{h}(T_{g} - T_{p}) - A_{p}\sigma\varepsilon(T_{p}^{4} - T_{w}^{4}) + \frac{dm_{a}}{d\tau}L_{a} + \frac{dm_{v}}{d\tau}L_{v}}{c_{yz}(m_{a} + m_{v} + m_{c} + m_{R})} + \frac{-(1 - \varphi)\frac{dm_{c1}}{d\tau}\frac{\Delta H_{c0}^{+}}{\mu_{c}} - \varphi\frac{dm_{c1}}{d\tau}\frac{\Delta H_{c02}^{+}}{\mu_{c}} - \frac{dm_{c2}}{d\tau}\left[\frac{\Delta H_{c02}^{+}}{\mu_{c}} - \frac{2\Delta H_{c0}^{+}}{\mu_{c}}\right]}{c_{yz}(m_{a} + m_{v} + m_{c} + m_{R})}$$
(35)

где $\frac{dm_{c1}}{d\tau}$ и $\frac{dm_{c2}}{d\tau}$ относятся к первому и второму слагаемым в уравнении (30); \bar{h} - коэффициент теплоотдачи; c_{yz} - средняя теплоемкость частицы; σ - константа Стефана-Больцмана; ε - степень черноты.

Учитывая нагрев воды, летучей фракции и примесей от T_p до T_g , а также что $Wd\tau = dx$, получим:

$$\frac{dT_{p}}{dx} = \frac{\frac{A_{p}}{W} \left[\overline{h} \left(T_{g} - T_{p} \right) - \sigma \varepsilon \left(T_{p}^{4} - T_{w}^{4} \right) \right] + \frac{dm_{a}}{dx} \left(L_{a} + c_{pa} \left(T_{g} - T_{p} \right) \right) + \frac{dm_{v}}{dx} \left(L_{v} + \left(T_{g} - T_{p} \right) \sum_{i} g_{vi} c_{pvi} \right)}{c_{yv} \left(m_{a} + m_{v} + m_{c} + m_{R} \right)} + \frac{-\left(1 - \varphi \right) \frac{dm_{c1}}{dx} \frac{\Delta H_{c0}^{+}}{\mu_{c}} - \varphi \frac{dm_{c1}}{dx} \frac{\Delta H_{c02}^{+}}{\mu_{c}} - \frac{dm_{c2}}{dx} \left[\frac{\Delta H_{c02}^{+}}{\mu_{c}} - \frac{2\Delta H_{c0}^{+}}{\mu_{c}} \right] + f_{R} \left(T_{g} - T_{p} \right) \sum_{i} g_{Ri} c_{pRi}}{c_{yv} \left(m_{a} + m_{v} + m_{c} + m_{R} \right)} \tag{36}$$

Далее, учитывая, что:

$$A_{p} = K_{\varphi} \left(\frac{f_{p}}{G_{\Sigma}}\right)^{-\frac{2}{3}} \left(\frac{\overline{G_{a}}}{\rho_{a}} + \frac{\overline{G_{v}}}{\rho_{v}} + \frac{\overline{G_{c}}}{\rho_{c}} + \frac{\overline{G_{R}}}{\rho_{R}}\right)^{\frac{2}{3}}$$
(37)

а также

$$c_{yz} = \frac{\overline{G}_a c_a + \overline{G}_v c_v + \overline{G}_c c_c + \overline{G}_R c_R}{\overline{G}_a + \overline{G}_v + \overline{G}_c + \overline{G}_R}$$
(38)

после ряда преобразований получим в окончательном виде уравнение теплообмена для частицы угля:

$$\frac{dT_{p}}{dx} = \frac{\frac{K_{\varphi}}{W} \left(\frac{f_{p}}{G_{\Sigma}}\right)^{\frac{1}{3}} \left(\sum \frac{\overline{G_{s}}}{\rho_{s}}\right)^{\frac{2}{3}} \left[\overline{h}(T_{g} - T_{p}) - \sigma \varepsilon \left(T_{p}^{4} - T_{w}^{4}\right)\right] + f_{a}\left[L_{a} + c_{pa}\left(T_{g} - T_{p}\right)\right] + c_{yz}\sum \overline{G}_{s} + \frac{f_{v}\left[L_{v} + \left(T_{g} - T_{p}\right)\sum_{i}g_{vi}c_{pvi}\right] - f_{C1}\left[\left(1 - \varphi\right)\frac{\Delta H_{co}^{+}}{\mu_{c}} + \varphi\frac{\Delta H_{co2}^{+}}{\mu_{c}}\right] + \frac{-f_{C2}\left[\frac{\Delta H_{co2}^{+}}{\mu_{c}} - \frac{2\Delta H_{co}^{+}}{\mu_{c}}\right] + f_{R}\left(T_{g} - T_{p}\right)\sum_{i}g_{Ri}c_{pRi}}{c_{yz}\sum \overline{G}_{s}} = f_{Tp} \qquad (39)$$

где: g_{vi}, g_{Ri} - массовые доли летучих ($\sum g_{vi} = 1$) и примесей ($\sum g_{Ri} = 1$).

.

Уравнение испарения капель впрыскиваемой воды. Это уравнение является известным [11] и с использованием принятых в модели переменных записывается следующим образом:

$$\frac{d\overline{G}_{e}}{dx} = 7,7955 \left(\frac{\overline{G}_{e}}{\rho_{e}}\right)^{\frac{1}{3}} \left(\frac{f_{e}}{G_{\Sigma}}\right)^{\frac{2}{3}} \frac{D_{ef} \mu_{a} P}{WR_{0}T_{e}} ln \left(1 - \frac{P_{st}(T_{e})}{P}\right) \equiv f_{ep}$$
(40)

где: *Т_в* – температура впрыскиваемой воды.

Уравнение теплообмена для капель впрыскиваемой воды. Это уравнение базируется на известном уравнении [27, 28].

$$\frac{dT_{e}}{d\tau} = \frac{1}{m_{e} c_{e}} \left[\frac{-\frac{dm_{e}}{d\tau} \bar{c}_{ev} (T_{g} - T_{e})}{exp \left(-\frac{dm_{e}}{d\tau} \bar{c}_{ev} \delta^{*} / (\bar{\lambda}_{ev} 4\pi R_{e}^{2})\right) - 1} + \frac{dm_{e}}{d\tau} L_{a} \right]$$
(41)

где: *m*₆, *c*₆, *R*₆, *T*₆ – масса, теплоемкость, радиус, температура впрыскиваемых капель воды, соответственно; $\bar{\lambda}_{_{R_V}}, \bar{c}_{_{R_V}}$ - теплопроводность и теплоемкость приведенной пленки.

После перехода к относительным величинам оно может быть записано в окончательной форме:

$$\frac{dT_{e}}{dx} = \frac{f_{ep}}{\overline{G}_{e}c_{e}} \left[\frac{-\overline{c}_{ev}(T_{g} - T_{e})}{exp\left(-G_{\Sigma}f_{ep}W\delta^{*}\overline{c}_{ev}/(\overline{\lambda}_{ev}f_{e}4\pi R_{e}^{2})\right) - 1} + L_{a} \right] \equiv f_{eT}$$
(42)

где: $f_e = N_e W = const$; N_e – число капель впрыскиваемой воды в единице объема.

Полиномиальные зависимости для плотности, теплопроводности, скрытой теплоты испарения и давления насыщения воды были получены путем аппроксимации табличных данных, приведенных в справочнике [29].

Уравнения изменения состава газовой фазы (уравнения химической кинетики) применяются для элементарного реактора R1, в котором находятся реагирующая газовая смесь и неподвижные относительно ее частицы угля. Этот реактор движется по каналу со скоростью W (рис.3), изменяя в ходе горения состав, температуру и плотность газа.

Эти уравнения представляются в экспоненциальной форме [24]:

$$\frac{d\gamma_i}{dx} = \frac{1}{W} \left(-e^{\gamma_i} \sum_j v_{ij} \Omega_j + \sum_q \sum_j v_{ij} \Omega_j \right) \qquad i, \ q = 1 \dots n_b; \quad j = 1 \dots (2m_b + r_b); \tag{43}$$

где
$$\Omega_j = k_j \left(\frac{P}{R_0 T_g}\right)^{\overline{m}_j} exp\left(-\sum_q n_{qj} \gamma_q\right)$$
 $\gamma_i = -\ln r_i; \quad \overline{m}_j = m_j - 1 + \sum_q n_{qj};$
 $v_{ij} = v_{is}'' - v_{is}'; \quad n_{ij} = v_{is}', \quad j = s, \qquad s = 1, ..., m_b,$
 $v_{ij} = v_{is}'' - v_{is}''; \quad n_{ij} = v_{is}'', \quad j = s + m_b, \qquad s = 1, ..., m_b,$
 $v_{ij} = v_{is}'' - v_{is}'; \quad n_{ij} = v_{is}', \qquad j = s + m_b, \qquad s = (m_b + 1), ..., (m_b + r_b).$

 m_j - признак участия каталитической частицы M в реакции j ($m_j = 1$ или $m_j = 0$); r_i – мольная доля *i*-го вещества в газовой фазе; m_b – число обратимых химических реакций; r_b – число реакций массообмена; n_b – число реагирующих веществ; v_{ij} , n_{ij} – приведенные стехиометрические коэффициенты реакций; k_j – константа скорости *j*-ой реакции; P – давление; R_0 – универсальная газовая постоянная.

Эти уравнения описывают протекание обратимых химических реакций:

$$\sum_{i} \nu'_{ij} B_{i} \Leftrightarrow \sum_{i} \nu''_{ij} B_{i} \qquad i=1...n_{b}; \quad j=1...m_{b}$$

$$\tag{44}$$

(где v'_{ij} , v''_{ij} –стехиометрические коэффициенты реакций; B_i – символ *i* –го вещества) и массообменные процессы, включающие:

- испарение влаги из частиц и впрыск воды в газо-угольный поток:

$$\rightarrow H_2O; \qquad j = 2m_b + l; \tag{45}$$

- выход летучих:

где V_i – символ *i*-го летучего вещества, n_v – число учитываемых летучих веществ; - горение углерода (вывод см. ниже):

$$0,5O_2 \xrightarrow{k_1} 0,5CO_2; \qquad 0,5O_2 \xrightarrow{k_2} CO; \qquad CO_2 \xrightarrow{k_3} 2CO; \qquad (47)$$

для $j = 2m_b + 2 + n_v, ..., 2m_b + 4 + n_v;$

- выход минеральных примесей (вывод см. ниже):

$$k_{R_i} = 0,5O_2 \rightarrow R_i + 0,5O_2; \qquad j = 2m_b + 5 + n_v, \dots, \ 2m_b + 4 + n_v + n_R;$$
(48)

где R_i – символ *i*-го вещества в примесях, n_R – число учитываемых веществ в примесях. - кальцинацию и сульфатизацию соединений кальция (вывод см. ниже):

$$CaCO_{3} \xrightarrow{k_{Ca}^{+}} CaO + CO_{2} \qquad CaO + SO_{2} + \frac{1}{2}O_{2} \xrightarrow{k_{Su}^{+}} CaSO_{4} \qquad (49)$$

Таким образом, математическая модель представляется системой $(n_b + 11)$ алгебраических и обыкновенных дифференциальных уравнений (14, 17, 18, 20, 22, 30, 31, 33, 39, 40, 42, 43) со следующими неизвестными величинами: \overline{G}_a , \overline{G}_v , \overline{G}_c , \overline{G}_R , W, T_g , h_g , T_p , φ , \overline{G}_e , T_e , r_i . Эта система является «жесткой» и решается неявным методом Пирумова с применением якобиана.

3.2 Реакции массообмена и их константы скорости

В соответствии с техникой имитации массопередачи в реагирующей системе реакциями массообмена [24] основной механизм химических превращений в газовой фазе должен быть дополнен некоторым набором таких реакций. Этот прием позволяет сохранить инвариантность алгоритма и программы относительно газовой среды, наборов летучих веществ и минеральных примесей. Слагаемые в уравнениях химической кинетики, генерируемые этими реакциями, должны по форме соответствовать законам формальной химической кинетики, включая в то же время данные о массовых потоках, получающихся из уравнений: испарения (20, 40), выхода летучих (22), горения угля (30), выхода минеральных примесей (33), кальцинации и сульфатизации. Для выполнения этих условий реакции массообмена представлены в формах (45...49), обоснование которых и определение соответствующих им констант скоростей приведено ниже.

<u>Реакции испарения воды из частиц угля и инжектируемой в поток воды</u> (45) являются типичными реакциями массоподвода 0-го порядка. Для определения их констант скоростей учтем, что скорость испарения воды из каждой частицы угля запишется как $\frac{dm_a}{d\tau}$, число частиц в 1м³ — N_p и объем газа в 1м³ — $(1-\sum \overline{G}_s)$. Тогда скорость выхода влаги из частиц угля в единицу объема газа будет:

$$W_a = -\frac{\frac{dm_a}{d\tau}N_p}{1 - N_p V_p} \tag{50}$$

Записывая эту формулу через относительные расходы, получим:

$$W_{a} = -\frac{G_{\Sigma} \frac{dG_{a}}{dx}}{1 - \sum \overline{G}_{s}} \left[\frac{\kappa 2}{M^{3}c}\right]$$
(51)

Учитывая нулевой порядок этой реакции, константа ее скорости предстанет в виде:

$$k_{a} = -\frac{0.001 G_{\Sigma} f_{a}}{\mu_{a} \left(1 - \sum_{s} \overline{G}_{s}\right)} \left[\frac{\mathcal{Z} M O \mathcal{I} \mathcal{B}}{\mathcal{C} \mathcal{M}^{3} \mathcal{C}}\right]$$
(52)

Для имитации впрыска воды в газо-угольный поток выражения для скорости и константы реакции массообмена будут аналогичными:

$$W_{\theta} = -\frac{G_{\Sigma}f_{\theta p}}{1 - \sum \overline{G}_{s}}; \qquad k_{\theta} = -\frac{0,001}{\mu_{a}}\frac{G_{\Sigma}f_{\theta p}}{1 - \sum \overline{G}_{s}}; \qquad (53)$$

Обе реакции (испарения и инжекции воды) можно объединить в одну реакцию, тогда ее константа скорости будет:

$$k_a = -\frac{0.001}{\mu_a} \frac{G_{\Sigma} \left(f_{ep} + f_a \right)}{1 - \sum \overline{G}_s}$$
(54)

<u>Реакции выхода летучих веществ</u> ($\rightarrow V_i$), также являются реакциями 0-го порядка и по аналогии с испарением воды, легко получить формулу константы скорости для *i*-го летучего вещества:

$$k_{v_i} = -0.001 \frac{g_{v_i}}{\mu_i} \frac{G_{\Sigma} f_v}{1 - \sum \overline{G}_s}$$

$$(55)$$

<u>Реакции горения углерода на поверхности частицы</u> основываются на символьных соотношениях (23) и (29) и количественно описываются уравнением (30). Для механизма (23) несложно получить формулу для скорости горения углерода в единице объема реагирующей среды:

$$W_{C} = A_{r}A_{k1} \exp\left(-\frac{E_{k1}}{R_{0}T_{p}}\right)P_{O_{2}}^{0.5} \left[\frac{\kappa^{2}}{m^{2}c}\right]$$
(56)

где A_r – общая площадь углерода на поверхности всех частиц, находящихся в единице объема, определяемая по соотношению: $A_r = A_p^C f_p / W$.

Однако в алгоритме расчета используются концентрации веществ, образующих реагирующую среду, и поэтому в уравнении (56) необходимо выполнить замену P_{O_2} на C_{O_2} и в результате получим:

$$W_{C} = A_{r}A_{k1} \exp\left(-\frac{E_{k1}}{R_{0}T_{p}}\right) \left(C_{O_{2}}R_{0}T_{g}\right)^{0.5}$$
(57)

Соотношение (57) написано в системе СИ и его необходимо трансформировать в систему, традиционно используемую в химической кинетике (гмоль, см, сек, калория). Выполняя соответствующие преобразования, получим соотношение для скорости горения углерода по реакции (23) в единице объема в виде:

$$W_{C} = 0,001 \frac{A_{r}}{\mu_{c}} A_{k1} \sqrt{82,06} T_{g}^{0.5} exp\left(-\frac{E_{k1}}{R_{0}T_{p}}\right) C_{O_{2}}^{0.5}$$
(58)

где C_{O_2} дана в гмоль/см³, а W_C – в гмоль/(см³с).

Это выражение можно интерпретировать как скорость некоторой химической реакции порядка 0,5. Отсюда можем записать: $W_C = k_C C_{O_2}^{0.5}$, где k_C определяется по соотношению:

$$k_{c} = 9,06.10^{-3} \frac{A_{r}}{\mu_{c}} A_{k} T_{g}^{0,5} \exp\left(-\frac{E_{k}}{R_{0} T_{p}}\right)$$
(59)

Теперь необходимо определить символические формулы для реакций массообмена, которые отражают: горение углерода, поглощение O_2 и образование CO и CO_2 , а также определить соответствующие константы скорости. Для этого будем использовать уже известное значение k_c , законы химической кинетики и выражение для реакции поверхностного горения (23). Эта реакция определяет, что с каждым сгоревшим грамм-молем углерода из газовой фазы исчезает $1 + \varphi/2$ грамм-молей O_2 и появляется в этой среде φ грамм-молей CO_2 и $(1-\varphi)$ грамм-молей CO. Отсюда, учитывая, что $W_c = k_c C_{O_2}^{0.5}$, можно определить соответствующие скорости реакций:

$$W_{O_2} = -\left(\frac{1+\varphi}{2}\right) k_C C_{O_2}^{0,5}; \qquad W_{CO_2} = \varphi k_C C_{O_2}^{0,5}; \qquad W_{CO} = (1-\varphi) k_C C_{O_2}^{0,5}; \tag{60}$$

Эти скорости должны быть включены, как дополнительные слагаемые, в уравнения химической кинетики для веществ О2, СО2, СО. Как несложно показать, для этого необходимо в механизм обычных химических реакций включить реакции массообмена:

$$0,5O_2 \xrightarrow{k_1} 0,5CO_2; \qquad 0,5O_2 \xrightarrow{k_2} CO; \tag{61}$$

с константами скорости: $k_1 = 2\phi k_C$; $k_2 = (1 - \phi)k_C$. Действительно в этом случае в соответствии с законами химической кинетики из (61) получим:

$$W_{CO_2}' = 0.5k_1 C_{O_2}^{0.5} = \varphi k_C C_{O_2}^{0.5}$$
(62)

$$W_{CO}'' = k_2 C_{O_2}^{0,5} = (1 - \varphi) k_C C_{O_2}^{0,5}$$
(63)

что совпадает с W_{CO_2} и W_{CO} в (60). Аналогично для O_2 получим:

$$W_{O_2}' + W_{O_2}'' = -0.5 \cdot 2\varphi k_c C_{O_2}^{0.5} - 0.5(1-\varphi)k_c C_{O_2}^{0.5} = -\left(\frac{1+\varphi}{2}\right)k_c C_{O_2}^{0.5}$$
(64)

что совпадает с W_{O_2} . Полностью аналогичным способом можно получить символьную форму и константу скорости для гетерогенной реакции $CO_2 \xrightarrow{k_3} 2CO$.

Реакции выхода минеральных примесей. Согласно уравнению выхода минеральных примесей (33) легко получить, что:

$$W_{R_i} = W_C \frac{g_{R_i}}{\rho_R} \frac{\overline{G}_R \rho_c}{\overline{G}_c} \left[\frac{\kappa^2}{M^3 c} \right]$$
(65)

Тогда в системе единиц, традиционной для химической кинетики, с подстановкой $W_C = k_C C_{O_2}^{0,5}$ получим:

$$W_{R_i} = k_C \left(\frac{\mu_c}{\mu_{R_i}} \frac{g_{R_i}}{\overline{G}_c} \overline{G}_R \frac{\rho_c}{\rho_R} \right) C_{O_2}^{0.5} \left[\frac{2MOJb}{cM^3 c} \right]$$
(66)

Так как из-за выхода примесей кислород из газовой фазы не исчезает, то в отличие от (61) реакцию выхода *i*-ой примеси необходимо представить в виде (48) с константой скорости:

$$k_{Ri} = k_C g_{Ri} \left(\frac{\mu_c}{\mu_{Ri}} \frac{\overline{G}_R}{\overline{G}_c} \frac{\rho_c}{\rho_R} \right)$$
(67)

<u>Кальцинирование *CaCO*₃</u>. Вводимые в тракт горения вместе с потоком воздуха частицы *CaCO*³ быстро нагреваются и проходят через процесс кальцинации [14], согласно реакции:

$$CaCO_3 \xrightarrow{k_{Ca}^+} CaO + CO_2 \tag{68}$$

Для определения скорости кальцинации будем использовать эмпирическое уравнение [23]:

$$x_{Ca} = 1 - \left(1 - \frac{k_m}{d_{Ca}^{0.55}}\tau\right)^3$$
(69)

где $x_{Ca} = r_{CaO} / r_{CaCO_3}^0$ - степень кальцинации; $k_m = 10.303 \exp(-10980/T_g)$ – константа скорости кальцинации; d_{Ca} – начальный диаметр частицы $CaCO_3$; r_{CaO} – мольная доля CaO; $r_{CaCO_3}^0$ – мольная доля $CaCO_3$ на входе в канал. Выполняя замену:

$$y = 1 - x_{Ca} = 1 - r_{CaO} / r_{CaCO_3}^0 = r_{CaCO_3} / r_{CaCO_3}^0 = C_{CaCO_3} / C_{CaCO_3}^0$$
(70)

где: *у* – степень разложения *CaCO*₃ в уравнении (63) легко получаем:

$$y^{\frac{1}{3}} = 1 - \frac{k_m}{d_{Ca}^{0.55}} \tau \tag{71}$$

Чтобы найти константу скорости реакции (68), необходимо представить зависимость (71) в форме обыкновенного дифференциального уравнения:

$$\frac{dy}{d\tau} = -A y^{\alpha} \tag{72}$$

(73)

где *A*, *α* - константы. Решая уравнения (72) получим:

 $\frac{y^{1-\alpha}}{1-\alpha} + C = -A\tau$

Сравнивая (71) с (73), определим:

$$C = -3; \ \alpha = 2/3; \ A = 3k_m / d_{Ca}^{0.55}$$
(74)

Подставляя найденные значения в (72) и выполняя обратную замену величины у по соотношению (70), получим:

$$\frac{dC_{CaCO_3}}{d\tau} = -\frac{3k_m}{d_{Ca}^{0.55}} \left(\frac{C_{CaCO_3}^0}{C_{CaCO_3}}\right)^{1/3} C_{CaCO_3}$$
(75)

Уравнение (75) определяет степень разложения *CaCO*₃ по реакции (68), рассматривая которую как реакцию 1-го порядка, получим:

$$k_{Ca}^{+} = 30.909 \cdot d_{Ca}^{-0.55} \cdot exp\left(\frac{-21817}{R_0 T}\right) \cdot \left(\frac{C_{CaCO_3}^{0}}{C_{CaCO_3}}\right)^{1/.3}$$
(76)

<u>Сульфатизация *CaO*</u>. Для определения степени превращения *CaO* в *CaSO*₄ по суммарной реакции:

$$CaO + SO_2 + \frac{1}{2}O_2 \xrightarrow{k_{Su}^+} CaSO_4 , \qquad (77)$$

необходимо определить значение k_{Su}^+ . Для этого используется уравнение, полученное в работе [15]:

$$1 - 3(1 - X)^{\frac{2}{3}} + 2(1 - X) = k_d \tau$$
(78)

где $X = r_{CaSO_4} / r_{CaO}^0$ - степень превращения CaO; $k_d = 2.65a_{Ca}^2 (P_{SO_2})^n exp(-E_{Su} / R_0 T_g)$; $a_{Ca} -$ активная поверхность частицы CaO в единице массы; P_{SO_2} - парциальное давление SO_2 ; показатель n = 0,62.

При замене $y=1-X=r_{CaO}/r_{CaO}^{0}$ уравнение (78) предстанет в виде:

$$1 - 3y^{\frac{2}{3}} + 2y = k_d \tau \tag{79}$$

Учитывая, что $P_{SO_2} = C_{SO_2} R_0 T_g$, можно написать:

$$k_{d} = 5,171 \cdot 10^{4} a_{Ca}^{2} (T_{g})^{n} \exp\left(-\frac{E_{Su}}{R_{0}T_{g}}\right) (C_{SO_{2}})^{n} = B_{S} (C_{SO_{2}})^{n}$$
(80)

Дифференцируя уравнение (79) по т, получаем соотношение:

$$\frac{dy}{d\tau} = \frac{-0.5k_d}{\left(y^{-1/3} - 1\right)}$$
(81)

которое через концентрацию Ссао записывается в виде:

$$\frac{dC_{CaO}}{d\tau} = \frac{-0.5C_{CaO}^{0}k_{d}}{\left(y^{-1/3} - 1\right)} \cdot \frac{y}{y} = \frac{-0.5k_{d}C_{CaO}}{\left(y^{2/3} - y\right)}$$
(82)

и после небольших преобразований уравнения (82) получаем:

$$\frac{dC_{CaO}}{d\tau} = \frac{-0.5B_s C_{SO_2}^{n-1}}{\left(y^{2/3} - y\right)C_{O_2}^{0.5}} C_{CaO} C_{SO_2} C_{O_2}^{0.5}$$
(83)

Отсюда, учитывая, что стехиометрические коэффициенты в (77) соответствуют степеням концентраций в (83), имеем:

$$\frac{dC_{CaO}}{d\tau} = -k_{Su}^{+}C_{CaO}C_{SO_2}C_{O_2}^{0,5}$$
(84)

где: $k_{Su}^+ = \frac{0.5B_SC_{SO_2}^{n-1}}{(y^{2/3}-y)C_{O_2}^{0.5}}.$

Уравнение (84) определяет степень превращения *CaO* в *CaSO*₄, которая зависит от температуры реагирующей смеси, концентрации участвующих в реакции (77) компонентов и активной поверхности частиц *CaO*. Эта поверхность является очень значительной (от 5 до 60 $M^2/гр$), т.к. в ходе превращения *CaCO*₃ в *CaO*, каждая частица *CaCO*₃ (сохраняясь как целое) превращается в конгломерат микрочастиц *CaO*. В зависимости от температуры *T*_g реакция (77) может протекать и в обратном направлении. Определение константы скорости k_{Su}^- выполняется по известному соотношению $k_{Su}^- = k_{Su}^+/K_{Su}$, где константа равновесия *K*_{Su} вычисляется в соответствии с формулами, представленными в [24].

Степень "захвата" серы (θ_{S}) определяется по формуле:

$$\theta_{S} = \frac{M_{SC}}{M_{SI}} = \frac{G_{\Sigma} \left(1 - \overline{G}_{V} - \overline{G}_{C} - \overline{G}_{R} - \overline{G}_{a}\right) \frac{r_{CaSO_{4}}}{\mu_{g}}}{G_{p}^{0} \cdot \frac{g_{v}^{0} g_{H_{2}S}}{\mu_{H_{2}S}}}$$
(85)

где M_{SC} – общий мольный расход $CaSO_4$ на выходе из канала; g_{H_2S} - массовая доля H_2S в летучей фракции угля; M_{SI} – общий мольный расход серы на входе в канал. В этой формуле предполагается, что сера изначально содержится только в летучем веществе H_2S ,

образующегося в результате пиролиза летучей фракции, но формула легко корректируется, если сера будет содержаться в других летучих веществах.

4. Расчет характеристик газо-угольных реагирующих потоков.

4.1 Апробация математической модели

На базе вышеприведенной модели были созданы алгоритм расчета и инвариантная выполнялись численные исследования программа, ПО которой И сравнение С экспериментальными [30] и теоретическими данными [7, 21] других авторов. Характеристики угля для этого сравнения представлены в табл.1

Таблица 1

Характеристики угля при сравнении с экспериментами (ЛФ –летучая фракция; ФУ – фиксированный углерод; ПР - Примеси; Q_{y2} – теплота сгорания угля)

Суммај	мар. состав (%) Летучие вещества – ЛВ (%)			ΠP – (%)		Q_{yz}				
ЛФ	ФУ	ПР	CH_4	C_6H_6	O_2	CO	CO_2	Al_2O_3	SiO ₂	МДж/кг
46.54	49.41	4.05	43.75	41.25	3.75	7.50	3.75	60	40	30.59

В экспериментах [30] температура и состав газовой фазы (воздух) поддерживались неизменными, что в нашей модели имитировалось высоким коэффициентом избытка окислителя ($\alpha_{o\kappa} = 30$). Сравнение проводилось для двух температур $T_g = 1410$ K и $T_g = 1900$ K при P = 1атм. Частицы угля имели диаметр $d_p = 55\mu$ k при начальной температуре $T_p = 600$ K. На рис.4, 5 приведено сравнение между экспериментальными и теоретическими данными по относительным массам частиц. Можно отметить удовлетворительное совпадение сравниваемых результатов.

Рис.4. Изменение относительной массы частицы угля по времени при $T_g = 1410$ К: (—) — наша модель; (**—**) — эксперимент [30]; (---) — модель [21]

Результаты сравнения по изменению температуры частицы угля (T_p) показаны на рис.6. Расчеты были проведены для частиц с диаметром $d_p^0 = 80$ µk, с начальной температурой $T_p(0) = 600$ K, инжектируемых в воздушную среду с $T_g = 1750$ K.

Рис.5. Изменение относительной массы частицы угля по времени при $T_g = 1900$ К: (—) – наша модель; (п) – эксперимент [30]; (- -) – модель [21]

Как видно, пока протекает процесс выгорания, линии изменения $T_p(\tau)$ являются близкими. А затем температура частицы должна приближаться к температуре воздушной среды, что показывает только наша модель.

Рис.6. Изменение температуры частицы угля во времени ($d_p^0 = 80 \mu k$; $T_g = 1750$ K; $T_p(0) = 600$ K) (—) – наша модель; (- - -) – модель [21]; (— —) - [16]

Сравнение с данными работ [23, 31] по скоростям образования *CaO* (кальцинации) по реакции (68), и *CaSO*₄ (сульфатизации) по реакции (77) приводится на рис.7, 8. На рис.7 приведена зависимость степени кальцинации *CaO*/(*CaCO*₃)₀ по времени для условий: $d_p(CaCO_3)_0 = 45 \,\mu m$, $T_p = 1373$ K; а на рис.8 показана зависимость степени сульфатизации *CaSO*₄/(*CaCO*₃)₀ по времени для условий: $d_p(CaCO_3)_0 = 45 \,\mu m$, $T_p = 1373$ K; а на рис.8 показана зависимость степени сульфатизации *CaSO*₄/(*CaCO*₃)₀ по времени для условий: $d_p(CaCO_3)_0 = 45 \,\mu m$, $T_p = 1373$ K, $a_{Ca} = 5,3 \text{ m}^2/\text{g}$, $r_{SO2} = 2000$ ppm. Процессы протекали в атмосфере сухого воздуха. Результаты сравнения можно считать удовлетворительными.

Рис.7. Степень кальцинации $CaO/(CaCO_3)_0$ в зависимости от времени. : $d_p(CaCO_3)_0 = 45 \ \mu m$, $T_p = 1373$ K; (—) – наша модель; (п) – эксперимент [31]; (- -) – модель [23]

Рис.8. Степень сульфатизации $CaSO_4/(CaCO_3)_0$ в зависимости от времени: $d_p(CaCO_3) = 45 \ \mu m$, $T_p = 1373$ K, $a_{Ca} = 5,3 \text{ m}^2/\text{g}$, $r_{SO2} = 2000$ ppm; (—) – наша модель; (**—**) – эксперимент [31]; (- -) – модель [23]

4.2 Результаты расчетов и их анализ

Расчеты по созданной математической модели газо-угольных потоков выполнялись для битумных и суб-битумных углей [32], характеристики которых даны в табл.2. Реагирующая газовая среда представлена 88 веществами (см. Приложение). Механизм химических реакций включает 506 реакций (см. Табл. П1, Приложение), из которых 491 реакция являются обратимыми (заимствованными из работ [33, 34]). Остальные реакции, (492....506) являющиеся односторонними, имитировали следующие массообменные процессы:

а) реакция 492 ($\rightarrow H_2O$) – испарение влаги и впрыскиваемой воды;

b) реакции 493...498 ($\rightarrow CH_4$; $\rightarrow C_6H_6$; $\rightarrow CO$; $\rightarrow CO_2$; $\rightarrow O_2$; $\rightarrow H_2S$) – выход летучих;

с) реакции 499...501 ($0.5O_2 \rightarrow 0.5CO$; $0.5O_2 \rightarrow CO_2$; $CO_2 \rightarrow 2CO$) – горение углерода; d) реакции 502,503 ($0.5O_2 \rightarrow Al_2O_3^* + 0.5O_2$; $0.5O_2 \rightarrow SiO_2^* + 0.5O_2$) – эмиссию инертных примесей;

е) реакция 504 ($CACO_3 \rightarrow CAO + CO_2$ - процесс кальцинации;

f) реакция 505 ($CAO + SO_2 + 0, 5O_2 \rightarrow CASO_4$) – сульфатизацию;

g) реакция 506 ($CASO_4 \rightarrow CAO + SO_2 + 0, 5O_2$) – десульфатизацию.

Таблица 2

Тип угля	Битумный уголь В1	Суб-битумный уголь S1
Суммарный анализ (%)		
Летучая фракция	19,4	42,1
Фиксирован. углерод	69,6	37,7
Примеси	9,4	14,9
Вода	1,6	5,3
Летучие вещества(%)		
CH_4	45,0	45,0
C_6H_6	25,0	25,0
СО	5,0	5,0
CO_2	10,0	10,0
O_2	5,0	5,0
H_2S	10,0	10,0
Минеральные примеси (%)		
Al_2O_3	60,0	60,0
SiO ₂	40,0	40,0
Теплота сгорания (кДж/кг)	33140	26544

Состав типичных битумных и суб-битумных углей

В начальном сечении канала в воздушный поток распыляется $CaCO_3$ в количестве $r_{CaCO_3} = 6000 \, ppm$. Другие данные для численных расчетов показаны в табл. 3.

Таблица 3

Основные исходные данные при численных расчетах

α_{ox}	W ₀ [м/с]	$f_{arepsilon}$	d _{Ca} [µк]	<i>L_v</i> [Дж/кг]	<i>T</i> _w [K]
1.25	3.35	0.6	45	10 ⁶	800
T_g^0 [K]	T_p^0 [K]	а _{са} [м²/гр]	d _p [µк]	Р [Па]	$G_g^0 \left/ G_p^0 \right.$
1073	300	20	100	10 ⁵	13.96

Из табл.2 легко получить условную формулу для углей. Например, для битумного угля имеем: $C_{6.797}H_{2.669}O_{0.475}Al_{0.110}Si_{0.063}S_{0.057}$. Значение средней теплоты образования летучих L_{ν} в работе [28] не приводится, поэтому задавалось значение $L_{\nu} = 10^3$ кДж/кг. Обычно эта теплота находится в интервале $L_{\nu} = (0.2...17) \cdot 10^3$ кДж/кг. На Рис.9...14 представлены некоторые результаты расчета горения распыленного битумного угля В1 в потоке без подвода охлаждающей воды. Изменение скорости, плотности газа и суммарной плотности

Физико-химическая кинетика в газовой динамике

ŀ

. .

$$\rho_{\Sigma} = \frac{1}{\left(\frac{g_g}{\rho_g} + \frac{g_p}{\rho_p}\right)}$$
(86)

по длине канала показано на Рис.9. По мере сгорания угля, в основном, из-за увеличения температуры возрастает скорость потока, и уменьшаются плотности. Диаметр частиц на начальном этапе практически не изменяется, немного увеличиваясь по мере выхода летучих. А затем начинается выгорание углерода с эмиссией минеральных примесей и диаметр частиц уменьшается.

Рис. 9. Изменение скорости, суммарной плотности, плотности газа и относительного диаметра частицы ($d_{om} = d_p / d_p^0$) по длине канала для продуктов сгорания битумного угля (B1)

Рис.10. Изменение T_p (—), T_g (- -) и φ по длине канала для продуктов сгорания битумного угля (В1)

На Рис.10 и 11 показаны изменения: T_p , T_g , φ и нормализованных значений летучей фракции ($G_{NV} = \overline{G}_v / \overline{G}_{v0}$), углерода ($G_{NC} = \overline{G}_c / \overline{G}_{c0}$) и примесей ($G_{NR} = \overline{G}_R / \overline{G}_{R0}$) по длине канала.

Рис.11. Изменение *G*_{NV}, *G*_{NC}, *G*_{NR} по длине канала при сгорании битумного угля (B1)

Сначала (до $x \le 0.2$ м) температура T_g немного снижается из-за теплопередачи к частицам. Но при $x \approx 0.2$ м начинается выход летучих и (примерно в 2...3 раза медленнее) горение углерода по гетерогенной реакции $C + O_2 \rightarrow CO_2$. При этом образование летучих с теплотой $L_v = 10^3$ кДж/кг способствует уменьшению T_p , а горение углерода (с выделением теплоты $Q_{CO_2} = 32.8 \cdot 10^3$ кДж/кг) способствует увеличению T_p . В результате (учитывая, что $Q_{CO_2} >> L_v$, а скорость сгорания углерода всего лишь в 2...3 раза меньше, чем темп выхода летучих) значение T_p становится больше чем T_g ($\Delta T = T_p - T_g \approx 100$ K). О факте начала горения углерода свидетельствует небольшое уменьшение концентрации O_2 уже при $x \approx 0.2$ м (Рис.12).

Рис.12 Изменение мольных долей *O*₂, *CO*, *CO*₂ по длине канала при сгорании угля B1

По мере роста T_p скорость выхода летучих увеличивается, их концентрация в газе возрастает (Рис.13) и при х ≈ 0.6 м происходит резкое ускорение газофазных реакций с образованием радикалов (OH, CH_2O, C_6H_5O и т.д.).

Рис.13. Изменение мольных долей *СН*₄, *C*₆*H*₆, *H*₂ по длине канала при сгорании угля В1

В результате в узкой зоне летучие вещества практически полностью сгорают (Рис.13), температура T_g быстро возрастает (достигая практически температуры T_p). К этому моменту (*T_p* ≈ 1300К) завершается выход летучих при выгорании всего 8% углерода (Рис.11). После этого горение углерода ускоряется, а т.к. значение $\varphi \approx 1$, то резко возрастает T_p , увеличивая ΔT до ≈200К. Однако при $T_p \approx 1700$ К согласно модели [6] значение $\phi \rightarrow 0$ и реакция (23) "превращается" в реакцию $C + 0.5O_2 \rightarrow CO$. В этом случае на частице угля выделяется тепло $Q_{CO} \approx 9.2 \cdot 10^3$ кДж/кг, а окись углерода, эмитируемая в газовую фазу, через ряд химических реакций превращается в CO_2 с выделением тепла Q_{CO2} - $Q_{CO} \approx 23.6 \cdot 10^3$ кДж/кг. Тогда рост T_p замедляется (появляется "излом" на линии T_p , Рис.10) и ΔT уменьшается. К этому моменту уже сгорает 30% углерода изначально находящегося в частице. В дальнейшем сгорание углерода с превращением в CO протекает монотонно (в интервале $x \approx$ 0.6...1.1м, с возрастанием Т_р от 1700К до 2300К), но на заключительной фазе этот процесс замедляется из-за значительного снижения концентрации О₂ в газе до 6% (Рис. 12). Температура газа при этом сравнивается с T_p и даже несколько превышает её. Следует отметить, что частица с завершением выгорания углерода не исчезает, т.к. минеральные примеси не полностью эмитируются в газовую фазу, что качественно соответствует экспериментальным данным.

Изменение концентраций характерных веществ газовой фазы показано на Рис.12...14. На начальном участке нагрева частиц состав газа не меняется. По достижении $T_p \approx 1000$ К начинается одновременно выход летучих: CH_4 , C_6H_6 , CO, CO_2 , H_2S , O_2 и горение углерода с невысокой скоростью с поглощением O_2 (Рис.12) и эмиссией в газовую фазу CO_2 . Этот процесс продолжается до $T_p \approx 1300$ К ($x \approx 0.6$ м) с накоплением летучих веществ, а содержание кислорода уменьшается всего на 0,2% (Рис.12 и 13). Затем в некоторый момент происходит их быстрее реагирование с O_2 , в результате чего летучие исчезают, превращаясь в CO_2 , H_2O и частично в CO. На эту картину из-за продолжающегося горения углерода по реакции ($C + O_2 \rightarrow CO_2$) накладывается дополнительный рост r_{CO_2} (Рис. 12). С момента резкого снижения φ практически до нуля, в газовую среду вместо CO_2 эмитируется CO, и значение r_{CO} возрастает. Но в газовой фазе CO также превращается в CO_2 . Из-за этого концентрация CO_2 становится высокой $r_{CO_2}^f \approx 12\%$, а CO остается низкой $r_{CO}^f \approx 1\%$.

Рис.14. Изменение мольных долей *H*₂*S*, *SO*₂, *H*₂*SO* по длине канала при сгорании угля B1

На Рис.14 показана эволюция серосодержащих веществ. Летучий компонент H_2S является неустойчивым и, выходя в газовую фазу практически сразу, взаимодействуя с кислородом, превращается в 2 вещества H_2SO и SO_2 . Вещество H_2SO является относительно устойчивым до $T_p \approx 1800$ К, поэтому r_{H_2SO} и r_{SO_2} не меняются до тех пор, пока не будет достигнута эта температура. Затем H_2SO разлагается, увеличивая концентрацию SO_2 (Рис.14).

5. Влияние карбоната кальция на очистку газо-угольного реагирующего потока от серосодержащих веществ.

5.1 Расчет химического равновесия системы: «уголь + воздух + CaCO₃»

Как отмечалось ранее (п.4), в ходе сгорания распыленного угля могут образовываться значительные концентрации SO_2 , H_2SO , для очистки от которых в поток подается карбонат кальция $CaCO_3$. Предполагается, что посредствам реакций (68) и (77) серосодержащие газообразные компоненты перейдут в конденсированное вещество $CaSO_4$, которое в циклоне отделяется от газа, тем самым, очищая этот газ от SO_2 (рис.1). Однако в работах ряда авторов [23, 31, 35] отмечается, что при высоких температурах $CaSO_4$ не образуется. Это подтверждается расчетом химически равновесного состава продуктов сгорания трехкомпонентного топлива «битумный уголь + воздух + $CaCO_3$ ». Расчеты проводились по модели [36] при мольном соотношении Ca/S = 1.5. Результаты приведены на рис.15, по которому для подобласти нашего исследования ($\alpha_{ox} = 1.0...1.6$; $T_g = 1100...1600$ K) можно отметить следующее:

- в сегменте $\alpha_{ox} = 1.0...1.05$; $T_g = 1100$ К...1550К располагается «хребет» по SO_2 , означающий, что здесь $CaSO_4$ не образуется;

- в зоне $\alpha_{ox} = 1.0...1.55$; $T_g \ge 1500$ К молекулы SO_2 также не «захватываются» соединениями кальция;

- «захват» SO₂ может протекать только в зоне $\alpha_{ox} = 1.1...1.55$; $T_g = 1050 K...1450 K.$

Рис.15. Содержание SO_2 в равновесных продуктах сгорания топлива "Уголь + воздух + $CaCO_3$ " при изменении $\alpha_{o\kappa}$ и T_g

Так как температура рабочего тела при адиабатическом сгорании данного топлива значительно выше 1500К, то необходимо уменьшить T_g , что достигается подачей вторичного воздуха (Рис.1) или впрыском воды.

5.2 Влияние расхода воды

В этой связи интересной является задача определения оптимального расхода впрыскиваемой в поток воды с целью достижения максимальной степени «захвата» молекул SO_2 соединениями кальция. При малом расходе воды температура T_g , понизится недостаточно, а при большом расходе эта температура упадет до уровня, при котором реакции (68, 77) практически прекратятся.

Расчеты были выполнены как для битумного (B1), так и для суб-битумного (S1) угля (табл. 2) по исходным данным, представленным в табл.3, при диаметре капель впрыскиваемой воды $d_{g} = 100 \mu k$. Для определения оптимального расхода воды выбиралось значение $L_{g} = 2m$.

На рис.16 показаны зависимости T_f (температура газа в конце канала) и $r_{CaSO_4}^f$ (мольная доля $CaSO_4$ в продуктах сгорания в конце канала) в зависимости от $Z_e = G_e^0 / G_p^0$ для обоих типов углей. Значение Z_e варьировалось в интервале $Z_e = 1...8$. Величина $r_{CaSO_4}^f$ характеризует степень очистки газов от SO_2 . Очевидно, что чем больше значение Z_e , тем меньше T_f . Так как уголь В1 имеет более высокую теплотворную способность, чем уголь S1, то для достижения одинаковых T_f при сгорании угля В1 требуется больший расход воды. Для обоих вариантов зависимости $r_{CaSO_4}^f(Z_e)$ имеют максимумы, соответствующие значению $T_f \approx 1450$ K, которое для варианта В1 достигается при $Z_e = 4,5$, а для S1 – при $Z_e = 3$. Эти

максимумы проявляются из-за действия двух факторов: - неустойчивости $CaSO_4$ при $T_f > 1500$ K (ограничение из-за химического равновесия); - невысокая скорость реакции (77) при температуре $T_f < 1300$ к, в результате чего в пределах тракта вещество $CaSO_4$ не успевает образовываться (хотя по условиям химического равновесия это допустимо).

Рис.16 Изменение T_f и r_{CaSO4}^f для битумного (—) и суб-битумного углей (- -) при их горении в канале в зависимости от относительного расхода впрыскиваемой воды Z_B ($L_e = 2$ м.)

Этот эффект подтверждается результатами, представленными на рис.17, где показаны зависимости $r_{SO_2}^f(Z_s)$, $r_{H_2SO}^f(Z_s)$ для вариантов сгорания углей В1 и S1.

Рис. 17 Влияние относительного расхода впрыскиваемой воды Z_6 на r_{SO2}^f и r_{H2SO}^f для битумного (—) и суб-битумного (---) углей при их горении в канале ($L_6 = 2$ м, см. рис.3)

Можно отметить что:

- с повышением Z_в общая концентрация серосодержащих веществ несколько снижается (изза разбавления смеси водяным паром); - при высоких температурах (когда Z_6 мало) образуется небольшое количество H_2SO , которое с повышением Z_6 возрастает, а затем стабилизируется;

- при сгорании суб-битумного угля (вариант S1) образуется значительно большее количество серосодержащих веществ, т.к. состав угля S1 включает большую долю летучих (42% против 19,4% для угля B1), а содержание H_2S в летучих фракциях обоих типов углей принято одинаковым $g_V(H_2S) = 10\%$ (Табл. 2).

Заключение

Разработана комплексная математическая модель процессов горения распыленного угля в реагирующем потоке, учитывающая: выход влаги и летучих веществ, горение углерода на поверхности частиц, эмиссию примесей, химические реакции в газовой фазе, а также «захват» SO_2 частицами $CaCO_3$ (кальцинация и сульфатизация). На базе этой модели была создана программа, которая является инвариантной относительно газовой среды и состава угольных частиц. Представлены результаты сравнения с экспериментальными данными и расчетами других авторов.

Численные исследования проводились для условий горения в воздухе частиц битумных и суб-битумных углей. По результатам расчетов можно отметить:

а) для условий горения без впрыска воды:

- существование зоны, когда температура частицы выше температуры газа;

- возможность «накопления» и последующего интенсивного сгорания летучих в газовой фазе;

- быстрое превращение «сублимированного» H_2S в SO_2 и H_2SO с последующей «медленной» трансформацией H_2SO в SO_2 ;

б) для условий горения с впрыском воды и внедрением в поток частиц СаСО3:

- двуокись серы может «связываться» в $CaSO_4$ при температурах $T_g < 1500$ К (ограничение по химическому равновесию);

- существование оптимального расхода впрыскиваемой воды, когда SO_2 максимально связывается в $CaSO_4$; в частности для битумных углей Z_6 (max) = 4,5, а для суб- битумных углей Z_6 (max) = 3.

Библиография

- 1. Nack H., Litt, R.D., Kim B.C., Tumolo R. Cofiring coal with waste material. //Coal Combustion Congresses. Peking, China, 1988, pp. 452-459.
- 2. Kobayashi H., Howard J.B., Sarofim A.F. Coal Devolatilization at High Temperatures. //Proceedings of 17 th Inter. Symp. on Combustion, The Combustion Institute, 1976, pp. 411-425.
- 3. Lau C.W.E, Niksa S. The combustion of individual particles of various coal types. //Combustion and Flame, 90, 1992, pp. 45-70.
- 4. Померанцев В.В., Арефьев К.М., Ахмедов Д.Б. и др. Основы практической теории горения. Ленинград, Энергоиздат, 1986, 312стр.
- 5. Бабий В.И., Иванова И.П. О температуре угольных частиц при горении. //Теплоэнергетика, №12, 1969, стр.34-37.
- 6. Monson R.C., Germane G.J., Blackham A.U., Smoot, L.D. Char Oxidation at Elevated Pressures. //Combustion and Flame, № 100, 1995, pp. 669-683.
- Visona S.P., Stanmore B.R. Modeling NO_x Release from a Single Coal Particle I. Formation of NO from Volatile Nitrogen. //Combustion and Flame, 105, 1996, pp. 92-103.
- 8. Самуйлов Е.В., Фоминская М.В., Головина Е.С. Модель и расчет процесса газификации одиночной углеродной частицы. //Физика горения и взрыва, т. 40. №, 2004, стр. 86-94
- 9. Agarval P.K., Genetti W.E., Lee Y.Y. Coupled drying and devolatilization of wet coal in fluidized beds. //Chemical Engineering Science, Vol. 41, N 9, 1986, pp. 2373-2383.
- 10. Hobbs M.L., Radulovic P.T. and Smoot L.D. Combustion and gasification of coals in fixed-beds. //Prog. Energy Combust. Sci., Vol. 19, 1993, pp. 505-586.
- 11. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. Москва, Изд. Наука, 1988, 502стр.

- 12. Yost R.S., Creasy D.E. Shrinking, swelling and true density of Morwell browns coal. //Fuel, 69, 1990, pp. 648-650.
- Valix M.G., Trimm D.L., Smith I.W., Harris D.J. Mass transfer effects in coal combustion. //Chemical Engineering Science, Vol. 47, N
 ^o 7, 1992, pp. 1607-1617.
- 14. Liu H. and Gibbs, B.M. The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor. //Fuel, Vol. 77, N° 14, 1998, pp. 1569-1577.
- 15. Stouffer M.R., Yoon H. An investigation of CaO Sulfation mechanisms in boiler sorbent injection. //AIChE Journal, Vol. 35, 1989, pp. 1253-1262.
- 16. Musarra S.P., Fletcher T.H., Niksa S.E Dwyer H.A. Heat and mass transfer in the vicinity of a devolatilizing coal particle. //Combust. Sci. And Tech. Vol. 45, 1986, pp. 289-307.
- 17. Field M.A., Gill, W., Morgan, B.B. and Hawksley P.G.W. Combustion of pulverized coal. The British Coal Utilization Research Association, Leathered, Surrey, England, 1967.
- Saastamoinen J.J., Aho M.J., Hamalainen J.P., Hernberg R.E Joutsenoja T. Pressurized pulverized fuel combustion in different concentrations of oxygen and carbon dioxide. //Energy & Fuels, 10, 1996, pp. 121-133.
- 19. Tang B., Ohtake K. Computer Simulation and NO Formation in Pulverized-Coal Combustion. //Proceedings of Coal Combust. Science and Technology of Industrial and Utility Applications, Ed. Hemisphere Publishing Corporation, 1988, pp. 199-206.
- 20. Бойко Е.А., Пачковский С.В. Диффузионно- кинетическая модель горения и тепломассообмена пылеугольных частиц в газовом потоке. //Химия твердого топлива, №6, 2008, стр 3-13
- 21. Veras, C. A. G., Saastamoinen, J., Carvalho Jr., J. A., e Aho, M. Overlapping of the devolatilization and char combustion stages in the burning of coal particles. // Combustion and Flame, Vol. 116, 1999, pp. 567-579.
- 22. Williams A., Pourkashanian M., Jones J.M. Combustion of pulverized coal and biomass. //Prog. Energy and Comb. Sci., 27, 2001, pp. 587-610.
- 23. Nair R.B., Yavuzkurt S. Modeling sulfur dioxide capture in a pulverized coal combustor. //Journal of Engineering for Gas Turbines and Power, Vol. 119, 1997, pp. 291-297.
- 24. Дрегалин А.Ф., Зенуков И.А., Крюков В.Г., Наумов В.И., Математическое моделирование высокотемпературных процессов в энергоустановках. Казань, КГУ, 1985, 264 стр.
- 25. Tseng H.P., Edgar T.F. The change of the physical properties of coal char during reaction. //Fuel, Vol. 68, 1989, pp. 114-119.
- 26. Commissaris F.A.C.M., Banin V.E., Roekaerts D.J.E.M. and Veefkind A. The rates of production of CO and CO_2 from the combustion of pulverized coal particles in a shock tube. //Combustion and Flame, 112, 1998, pp. 121-131.
- 27. Priem P.J. Liquid rocket technology for the chemical engineering. //Chemical Engineering Process, Vol. 66, N° 4, 1970, pp. 61-70.
- 28. Priem P.J., Heidmann M.F. Propellant vaporization as a design criterion for rocket-engine combustion chambers. NASA Technical Report, R-67, 1960.
- 29. Варгафтик И.Б. Справочник по Теплофизическим Свойствам Газов и Жидкостей. Москва, Гос. Изд-во Физ-Мат. Литературы, 1963, 708 стр.
- 30. Jost M.E., Leslie I., Kruger C., Reactivity of Pulverized Coal in an Oxidizing Environment. //20 Symposium International on Combustion, The Combustion Institute, 1984, pp. 1531-1537.
- 31. Hu N., Liu Y., Miller S.F. and Scaroni A. W. Experimental investigation of high-temperature, short residence-time and Sulfation of limestone and dolostone sorbents. //Proc. American Chemical Society National Meeting, San Diego, 1994, pp. 233.
- 32. Saito M., Sadakata M., Sato M., Soutome T., Murata H. Combustion rates of pulverized coal particles in high-temperature / high-oxygen concentration atmosphere. //Combustion and Flame, 87, 1991, pp. 1-12
- 33. Кондратьев В.Н., Константы скорости газофазных реакций. Справочник, М., Наука, 1974, 512 стр.
- 34. LEEDS Reaction Kinetics Database. School of Chemistry, University of Leeds, 2000.
- 35. Borgwardt R.H., Bruce K.R. Effect of specific surface area on reactivity of CaO with SO₂. //AIChE Journal, 32, 1986, p. 239.
- Алемасов В.Е., Дрегалин А.Ф., Тишин А.П., Худяков В.И., Термодинамические и теплофизические свойства продуктов сгорания. Справочник Том 1, Москва, ВИНИТИ, 1971, 266 стр.

приложение

Характеристика реагирующей среды:

Набор веществ:

CA, SO₂, CAO, CASO₄, CACO₃, N, N₂, NO, NO₂, NH, NH₂, NH₃, HNO, H₂O₂, SO, H, H₂, O, O₂, C, H₂O, CO, OH, CH₄, CH₂, CH₃, HCO, H₂CO, C₂H, HO₂, C₂H₆, C₂H₅, C₂H₃, C₂H₄, C₂H₂, C₆H₆, C₆H₅, C₄H₃, CO₂, AL, SI, SN, N₂O, S, SO₃, C₆H₅O, C₃H₅, C₂H₃O, C₃H₆O, CH₃O₂, CH₃O, C₃H₅O, C₃H₆, S₂, S₂O, HS, C₃H₈, H₃CO, CH, C₂H₂O, CH₄O, C₂H₄O, H₃C₂O, HC₂O, CN, H₂S, AR, CH₂O, HO₃S, O₂S, CS, NCO, H₂O₂S, HNCO, HS₂, HO₂S, COS, HSO, H₂S₂, H₂SO, HCN, H₂OS, C₂, C₂H₅O, HSO₂, HOS, AL₂O₃*, SIO₂*;

Информация о веществах находится в отдельном файле и представлена в формате TTI [36].

Механизм реакций:

Механизм элементарных химических реакций приведен в Таблице П1. Единицы измерения: гмоль, калория, см, сек, К. Константы скорости прямого направления обратимых реакций определяются по формуле:

$$k_{s}^{+} = A_{s}^{+}T^{n_{s}^{+}} exp(-E_{s}^{+}/R_{o}T)$$

Константы скорости обратных направлений вычисляются из соотношений:

$$k_s^- = k_s^+ / K_s \quad s = 1...m_c,$$

где *K*_s – константа равновесия *s*-ой реакции.

Константы скорости односторонних реакций (492...506) определяются по формулам, приведенным в настоящее статье, поэтому их значения в Таблице П1 зануляются, за исключением n_s^+ , E_s^+ в реакциях 504 и 505. Универсальная газовая постоянная

$$R_0 = 1,987 \frac{\kappa a \pi}{2 M o \pi b \cdot K}$$

Таблица П1

N	Реакция	$lg A_s^+$	n_s^+	E_s^+
1	$C_3H_6 + HO_2 = C_3H_5 + H_2O_2$	3,984	2,60	13910
2	$C_3H_6 + O = C_2H_5 + HCO$	6,835	1,57	-628
3	$C_{3}H_{6} + O = CH_{3} + C_{2}H_{3}O$	6,960	1,57	-628
4	$C_3H_6 + O = C_2H_4 + CH_2O$	6,658	1,57	-628
5	$C_3H_6 + H = C_3H_5 + H_2$	12,810	0,00	4445
6	$C_3H_6 + O_2 = C_3H_5 + HO_2$	12,290	0,00	39000
7	$C_3H_6 + CH_3 = C_3H_5 + CH_4$	0,344	3,50	5680
8	$C_3H_6 + C_2H_5 = C_3H_5 + C_2H_6$	0,348	3,50	6640
9	$C_{3}H_{6} + CH_{3}O_{2} = C_{3}H_{6}O + CH_{3}O$	11,602	0,00	11720
10	$C_3H_5 + HO_2 = C_3H_5O + OH$	12,954	0,00	0
11	$C_{3}H_{5} + CH_{3}O_{2} = C_{3}H_{5}O + CH_{3}O$	11,580	0,00	-1200
12	$C_3H_5O = CH_2O + C_2H_3$	14,000	0,00	21600
13	$NO_2 + H_2 = NO + H_2O$	9,400	0,00	18000
14	$C_3H_6 + OH = C_3H_5 + H_2O$	6,494	2,00	-300
15	$C_3H_6 = C_3H_5 + H$	14,660	0,00	88900

16	$C_3H_6 = C_2H_3 + CH_3$	21,041	-1,20	97720
17	$C_3H_6 + HO_2 = C_3H_6O + OH$	12,021	0,00	14241
18	$CH_2 + C_2H_4 = C_3H_6$	12,500	0,00	5280
19	$C_3H_8 = C_2H_5 + CH_3$	16,602	0,00	84500
20	$C_6H_5 = C_4H_3 + C_2H_2$	14,300	0,00	86000
21	$C_6H_5 + H = C_6H_6$	13,903	0,00	0
22	$C_6H_6 + O_2 = C_6H_5 + HO_2$	13,800	0,00	60000
23	$C_6H_6 + OH = C_6H_5 + H_2O$	8,210	1,42	1454
24	$C_6H_5 + OH = C_6H_5O + H$	13,699	0,00	0
25	$C_6H_5 + O_2 = C_6H_5O + O$	13,415	0,00	6120
26	$C_6H_5 + HO_2 = C_6H_5O + OH$	13,699	0,00	1000
27	$C_6H_6 + H = C_6H_5 + H_2$	12,477	0,00	8100
28	$C_6H_6 + OH = C_6H_5 + H_2O$	8,225	1,42	1450
29	$C_6H_6 + O = C_6H_5O + H$	13,444	0,00	4910
30	$C_6H_6 + O_2 = C_6H_5O + OH$	13,602	0,00	34000
31	$CO + HO_2 = CO_2 + OH$	14,176	0,00	23650
32	$CO + O + M = CO_2 + M$	14,790	0,00	3000
33	$CO + O + H_2 = CO_2 + H_2$	14,966	0,00	3000
34	$CO + O + H_2O = CO_2 + H_2O$	15,506	0,00	3000
35	$CO + O + CO_2 = 2CO_2$	15,229	0,00	3000
36	$CO + O + CH_4 = CO_2 + CH_4$	15,132	0,00	3000
37	$CO + O + CH_4O = CO_2 + CH_4O$	15,603	0,00	3000
38	$CO + O_2 = CO_2 + O$	12,398	0,00	47800
39	HCO + M = H + CO + M	14,193	0,00	15760
40	$HCO + H_2O = H + CO + H_2O$	14,909	0,00	15760
41	$HCO + CO_2 = H + CO + CO_2$	14,632	0,00	15760
42	$HCO + CH_4 = H + CO + CH_4$	14,536	0,00	15760
43	$HCO + CH_4O = H + CO + CH_4O$	15,006	0,00	15760
44	$HCO + OH = CO + H_2O$	14,000	0,00	0
45	HCO + O = CO + OH	13,477	0,00	0
46	$HCO + O = CO_2 + H$	13,477	0,00	0
47	$HCO + H = CO + H_2$	13,954	0,00	0
48	$HCO + O_2 = CO + HO_2$	13,431	0,00	1190
49	$HCO + CH_3 = CO + CH_4$	14,079	0,00	0
50	$HCO + HCO = CH_2O + CO$	13,477	0,00	0
51	$2\text{HCO} = \text{H}_2 + 2\text{CO}$	13,342	0,00	0
52	$CH_4 + M = CH_3 + H + M$	16,380	0,00	104913
53	$CH_4 + CO_2 = CH_3 + H + CO_2$	16,681	0,00	104913

54	$CH_4 + H_2O = CH_3 + H + H_2O$	16,982	0,00	104913
55	$2CH_4 = CH_3 + H + CH_4$	16,380	0,00	104913
56	$CH_4 + HO_2 = CH_3 + H_2O_2$	12,954	0,00	24641
57	$CH_4 + OH = CH_3 + H_2O$	7,190	1,83	2774
58	$CH_4 + O = CH_3 + OH$	8,857	1,56	8485
59	$CH_4 + H = CH_3 + H_2$	4,114	3,00	8050
60	$CH_4 + CH_2 = 2CH_3$	12,634	0,00	10038
61	$CH_4 + O_2 = CH_3 + HO_2$	13,602	0,00	56900
62	$CH_3 + M = CH_2 + H + M$	16,670	0,00	93200
63	$CH_3 + H_2 = CH_2 + H + H_2$	16,846	0,00	93200
64	$CH_3 + H_2O = CH_2 + H + H_2O$	17,386	0,00	93200
65	$CH_3 + CO_2 = CH_2 + H + CO_2$	17,109	0,00	93200
66	$CH_3 + CH_4 = CH_2 + H + CH_4$	17,012	0,00	93200
67	$CH_3 + CH_4O = CH_2 + H + CH_4O$	17,483	0,00	93200
68	$CH_3 + M = CH + H_2 + M$	16,000	0,00	85240
69	$CH_3 + H_2 = CH + H_2 + H_2$	16,176	0,00	85240
70	$CH_3 + H_2O = CH + H_2 + H_2O$	16,716	0,00	85240
71	$CH_3 + CO_2 = CH + H_2 + CO_2$	16,439	0,00	85240
72	$CH_3 + CH_4 = CH + H_2 + CH_4$	16,342	0,00	85240
73	$CH_3 + CH_4O = CH + H_2 + CH_4O$	16,813	0,00	85240
74	$CH_3 + HO_2 = CH_3O + OH$	13,255	0,00	0
75	$CH_3 + OH = H_3CO + H$	19,422	-1,80	8068
76	$CH_3 + OH = CH_3O + H$	12,759	-0,23	13931
77	$CH_3 + OH = CH_2 + H_2O$	18,949	-1,80	8067
78	$CH_3 + OH = CH_2O + H_2$	12,504	-0,53	10810
79	$CH_3 + O = H + CH_2O$	13,926	0,00	0
80	$CH_3 + O_2 = CH_2O + OH$	11,532	0,00	8940
81	$CH_3 + O_2 = CH_3O + O$	14,121	0,00	31400
82	$2CH_3 = C_2H_5 + H$	12,699	0,10	10600
83	$2CH_3 + M = C_2H_6 + M$	16,964	-1,17	636
84	$2CH_3 + H_2 = C_2H_6 + H_2$	16,964	-1,17	636
85	$2CH_3 + CO = C_2H_6 + CO$	16,964	-1,17	636
86	$2CH_3 + CO_2 = \overline{C_2H_6 + CO_2}$	17,265	-1,17	636
87	$2CH_3 + H_2O = \overline{C_2H_6 + H_2O}$	17,566	-1,17	636
88	$CH_3 + CH_3O = \overline{CH_4 + CH_2O}$	13,382	0,00	0
89	$CH_3 + H_3CO = CH_4 + CH_2O$	13,929	0,00	0
90	$CH_3 + O_2 + M = CH_3O_2 + M$	8,892	1,20	0
91	$CH_3 + CH_3 = C_2H_4 + H_2$	14,000	0,00	32000

92	$CH_2 + OH = CH_2O + H$	13,398	0,00	0
93	$CH_2 + O = CO + H_2$	13,681	0,00	0
94	$CH_2 + O = CO + 2H$	13,857	0,00	0
95	$CH_2 + O = CH + OH$	14,477	0,00	11920
96	$CH_2 + O = HCO + H$	13,477	0,00	0
97	$CH_2 + H = CH + H_2$	13,494	0,00	-1340
98	$CH_2 + O_2 = CO_2 + H_2$	11,839	0,00	500
99	$CH_2 + O_2 = CO_2 + 2H$	12,204	0,00	1000
100	$CH_2 + O_2 = CO + H_2O$	10,279	0,00	-1000
101	$CH_2 + O_2 = CH_2O + O$	13,699	0,00	9000
102	$C_2H_2 + O = CH_2 + CO$	6,079	2,10	1570
103	$CH_2 + CO_2 = CH_2O + CO$	11,041	0,00	1000
104	$2CH_2 = C_2H_2 + H_2$	15,176	0,00	11950
105	$2CH_2 = C_2H_2 + 2H$	14,301	0,00	11000
106	$2CH_2 = CH_3 + CH$	14,380	0,00	9940
107	$2CH_2 = C_2H_3 + H$	13,301	0,00	0
108	$CH_2 + CH_3 = C_2H_4 + H$	13,602	0,00	0
109	$CH_2 + CH = C_2H_2 + H$	13,602	0,00	0
110	$CH_2 + C = 2CH$	12,210	0,67	46800
111	$CH_2 + M = C + H_2 + M$	14,204	0,00	64000
112	$CH_2 + M = CH + H + M$	15,748	0,00	89600
113	CH + OH = HCO + H	13,477	0,00	0
114	CH + O = C + OH	13,182	0,00	4730
115	$H_2O + C = CH + OH$	11,892	0,67	39300
116	$CH + O_2 = HCO + O$	13,690	0,00	0
117	$CH + O_2 = CO + OH$	13,690	0,00	0
118	$CH + CH_4 = C_2H_4 + H$	14,591	-0,40	0
119	$CH + CH_3 = C_2H_3 + H$	13,477	0,00	0
120	$CH_2 + OH = CH + H_2O$	7,053	2,00	3000
121	$CH + H = C + H_2$	13,898	0,00	160
122	$CH + H_2O = CH_2O + H$	15,068	-0,75	0
123	$CH + H_2O = H_3CO$	12,756	0,00	-760
124	$CH + CH_2O = C_2H_2O + H$	14,000	0,00	-515
125	$CH_3O + M = CH_2O + H + M$	13,732	0,00	13500
126	$CH_3O + H_2 = CH_2O + H + H_2$	14,130	0,00	13500
127	$CH_3O + H_2O = \overline{CH_2O + H + H_2O}$	14,448	0,00	13500
128	$CH_3O + CO_2 = CH_2O + H + CO_2$	14,172	0,00	13500
129	$CH_3\overline{O+CH_4} = \overline{CH_2O+H+CH_4}$	14,075	0,00	13500

130	$CH_3O + CH_4O = CH_2O + H + CH_4O$	14,545	0,00	13500
131	$CH_3O + HO_2 = CH_2O + H_2O_2$	11,477	0,00	0
132	$CH_3O + OH = CH_2O + H_2O$	13,255	0,00	0
133	$CH_3O + O = CH_2O + OH$	12,255	0,00	0
134	$CH_3O + H = CH_2O + H_2$	12,255	0,00	0
135	$CH_3O + O_2 = CH_2O + HO_2$	10,342	0,00	1750
136	$CH_3O + CH_2O = CH_4O + HCO$	11,000	0,00	2980
137	$CH_3O + HCO = CH_4O + CO$	13,954	0,00	0
138	$CH_{3}O + C_{2}H_{5} = CH_{2}O + C_{2}H_{6}$	13,382	0,00	0
139	$\mathbf{C}\mathbf{H}_{3}\mathbf{O}+\mathbf{C}_{2}\mathbf{H}_{3}=\mathbf{C}\mathbf{H}_{2}\mathbf{O}+\mathbf{C}_{2}\mathbf{H}_{4}$	13,382	0,00	0
140	$CH_{3}O + C_{2}H_{4} = CH_{2}O + C_{2}H_{5}$	11,079	0,00	6750
141	$CH_3O + H = H_3CO + H$	6,531	1,60	0
142	$CH_2O + M = HCO + H + M$	35,699	-5,54	96680
143	$CH_2O + M = CO + H_2 + M$	36,041	-5,54	96680
144	$CH_2O + HO_2 = HCO + H_2O_2$	4,614	2,50	10210
145	$CH_2O + OH = HCO + H_2O$	9,536	1,18	-447
146	$H_2CO + O_2 = HCO + HO_2$	11,478	0,00	32000
147	$CH_2O + O_2 = HCO + HO_2$	13,778	0,00	40650
148	$CH_2O + O = HCO + OH$	11,613	0,57	2760
149	$CH_2 + H_2CO = CH_4 + CO$	13,780	0,00	0
150	$CH_3 + O_2 = H_2CO + OH$	11,478	0,00	10000
151	$CH_2 + NO = N + H_2CO$	12,204	0,00	699
152	$CH_3 + O = H_2CO + H$	13,271	0,00	0
153	$CH_3 + H_2CO = CH_4 + HCO$	13,780	0,00	4500
154	$CH_2 + H_2O = H_2CO + H_2$	12,780	0,00	2500
155	$H_2CO + HCO = CH_3 + CO_2$	12,780	0,00	4500
156	$H_2CO + M = HCO + H + M$	16,698	0,00	72000
157	$H_2CO + OH = HCO + H_2O$	14,557	0,00	1500
158	$H + H_2CO = H_2 + HCO$	13,780	0,00	1500
159	$O + H_2CO = OH + HCO$	14,926	0,00	5500
160	$CH_3 + OH = H_2CO + H_2$	12,000	0,00	0
161	$CH_2O + H = HCO + H_2$	8,100	1,62	2166
162	$C_2H_6 + M = C_2H_5 + H + M$	20,947	-1,23	102210
163	$C_2H_6 + H_2 = C_2H_5 + H + H_2$	20,947	-1,23	102210
164	$C_2H_6 + CH_4 = C_2H_5 + H + CH_4$	20,947	-1,23	102210
165	$C_2H_6 + H_2O = \overline{C_2H_5 + H + H_2O}$	21,646	-1,23	102210
166	$C_2H_6 + CO_2 = \overline{C_2H_5 + H + CO_2}$	20,947	-1,23	102210
167	$2C_2H_6 = C_2H_5 + H + C_2H_6$	21,248	-1,23	102210

168	$C_2H_6 + HO_2 = C_2H_5 + H_2O_2$	13,124	0,00	20535
169	$C_2H_6 + OH = C_2H_5 + H_2O$	6,857	2,00	870
170	$C_2H_6 + O = C_2H_5 + OH$	9,000	1,50	5800
171	$C_2H_6 + H = C_2H_5 + H_2$	9,146	1,50	7400
172	$C_2H_6 + H = CH_3 + CH_4$	4,732	0,00	11630
173	$C_2H_6 + O_2 = C_2H_5 + HO_2$	13,778	0,00	52000
174	$C_2H_6 + CH_3 = CH_4 + C_2H_5$	14,740	0,00	21500
175	$C_2H_6 + CH_2 = CH_3 + C_2H_5$	12,813	0,00	7911
176	$C_2H_6 + HCO = CH_2O + C_2H_5$	4,672	2,72	18235
177	$C_2H_5 + M = C_2H_4 + H + M$	10,045	1,04	36767
178	$C_2H_5 + H_2 = C_2H_4 + H + H_2$	10,045	1,04	36767
179	$C_2H_5 + CO = C_2H_4 + H + CO$	10,045	1,04	36767
180	$C_2H_5 + CO_2 = C_2H_4 + H + CO_2$	10,346	1,04	36767
181	$C_2H_5 + H_2O = C_2H_4 + H + H_2O$	10,647	1,04	36767
182	$C_2H_5 + CH_4 = C_2H_4 + H + CH_4$	10,045	1,04	36767
183	$C_2H_5 + C_2H_6 = C_2H_4 + H + C_2H_6$	13,914	0,00	39880
184	$C_2H_5 + HO_2 = C_2H_4 + H_2O_2$	12,255	0,00	0
185	$C_2H_5 + OH = C_2H_4 + H_2O$	13,382	0,00	0
186	$C_2H_5 + O = CH_2O + CH_3$	13,627	0,00	0
187	$C_2H_5 + O = C_2H_4O + H$	13,699	0,00	0
188	$C_2H_5 + O = C_2H_4 + OH$	13,539	0,00	0
189	$C_2H_5 + H = C_2H_4 + H_2$	12,270	0,00	0
190	$C_2H_5 + O_2 = C_2H_4 + HO_2$	19,408	-2,77	1980
191	$C_2H_5 + CH_3 = C_2H_4 + CH_4$	12,041	0,00	0
192	$2C_2H_5 = C_2H_4 + C_2H_6$	12,146	0,00	0
193	$C_2H_5 + HO_2 = C_2H_5O + OH$	13,477	0,00	0
194	$C_2 H_4 + M = C_2 H_2 + H_2 + M$	16,544	0,00	71530
195	$C_2H_4 + H_2 = C_2H_2 + H_2 + H_2$	16,720	0,00	71530
196	$C_2H_4 + H_2O = C_2H_2 + H_2 + H_2O$	17,260	0,00	71530
197	$C_2H_4 + CO_2 = C_2H_2 + H_2 + CO_2$	16,983	0,00	71530
198	$C_2H_4 + CH_4 = C_2H_2 + H_2 + CH_4$	16,887	0,00	71530
199	$C_2H_4 + CH_4O = C_2H_2 + H_2 + CH_4O$	17,357	0,00	71530
200	$C_2H_4 + M = C_2\overline{H_3 + H + M}$	17,415	0,00	96570
201	$C_2H_4 + H_2 = C_2H_3 + H + H_2$	17,591	0,00	96570
202	$C_2H_4 + H_2O = \overline{C_2H_3 + H} + H_2O$	18,131	0,00	96570
203	$C_2H_4 + CO_2 = C_2H_3 + H + CO_2$	17,854	0,00	96570
204	$C_2H_4 + CH_4 = \overline{C_2H_3 + H + CH_4}$	17,757	0,00	96570
205	$C_2H_4 + CH_4O = C_2H_3 + H + CH_4O$	18,228	0,00	96570

206	$C_2H_4 + OH = C_2H_3 + H_2O$	5,743	2,31	2900
207	$C_2H_4 + O = CH_3 + HCO$	6,908	1,88	180
208	$C_2H_4 + H = C_2H_3 + H_2$	7,652	2,12	13366
209	$C_2H_4 + O_2 = C_2H_3 + HO_2$	13,602	0,00	61500
210	$2C_2H_4 = C_2H_5 + C_2H_3$	14,270	0,00	64200
211	$C_2H_4 + CH_3 = C_2H_3 + CH_4$	12,623	0,00	11100
212	$C_2H_4 + O = H_3C_2O + H$	6,672	1,88	180
213	$C_2H_4 + O = CH_2O + CH_2$	4,477	1,88	180
214	$C_2H_4 + O = C_2H_2O + H_2$	5,826	1,88	180
215	$C_2H_4 + O = C_2H_3 + OH$	7,179	1,91	3790
216	$C_2H_4 + OH = CH_2O + CH_3$	12,301	0,00	960
217	$C_2H_4 + OH = CH_3 + H_2CO$	13,000	0,00	0
218	$C_2H_4 + HO_2 = C_2H_3 + H_2O_2$	13,049	0,00	30400
219	$C_2H_4 + CH_3O = C_2H_3 + CH_4O$	11,000	0,00	10000
220	$C_2H_3+M=C_2H_2+H+M$	14,322	0,00	39740
221	$C_2H_3 + H_2 = C_2H_2 + H + H_2$	14,322	0,00	39740
222	$C_2H_3 + CO = C_2H_2 + H + CO$	14,322	0,00	39740
223	$C_2H_3 + CO_2 = C_2H_2 + H + CO_2$	14,623	0,00	39740
224	$C_2H_3 + H_2O = C_2H_2 + H + H_2O$	14,924	0,00	39740
225	$C_2H_3 + CH_4 = C_2H_2 + H + CH_4$	14,322	0,00	39740
226	$C_2H_3 + C_2H_6 = C_2H_2 + H + C_2H_6$	14,623	0,00	39740
227	$C_2H_3 + OH = C_2H_2 + H_2O$	13,477	0,00	0
228	$C_2H_3 + H = C_2H_2 + H_2$	13,079	0,00	0
229	$C_2H_3 + O = CH_3 + CO$	13,000	0,00	0
230	$C_2H_3 + O_2 = CH_2O + HCO$	29,230	-5,31	6500
231	$C_2H_3 + CH = CH_2 + C_2H_2$	13,699	0,00	0
232	$C_2H_3 + CH_3 = C_2H_2 + CH_4$	13,398	0,00	0
233	$C_2H_3 + C_2H = {}_2C_2H_2$	13,477	0,00	0
234	$C_2H_3 + HCO = C_2H_4 + CO$	13,956	0,00	0
235	$C_2H_3 + CH_2O = C_2H_4 + HCO$	3,734	2,81	5862
236	$C_2H_3 + C_2H_3 = C_2H_2 + C_2H_4$	13,161	0,00	0
237	$C_2H_3 + O = C_2H_2 + OH$	13,000	0,00	0
238	$C_2H_3 + O = CH_2 + HCO$	13,000	0,00	0
239	$C_2H_3 + O = C_2H_2O + H$	13,000	0,00	0
240	$C_2H_3 + OH = C_2H_4O$	13,477	0,00	0
241	$C_2H_3 + O_2 = C_2H_2 + HO_2$	15,715	-1,26	3310
242	$C_2H_3 + O_2 = H_3C_2O + O$	14,544	-0,61	5260
243	$C_2H_3 + CH_2 = C_2H_2 + CH_3$	13,477	0,00	0

244	$C_2H_2 = C_2H + H$	32,375	-5,28	130688
245	$C_2H_2 + O_2 = HC_2O + OH$	8,301	1,50	30100
246	$C_2H_2 + O_2 = C_2H + HO_2$	13,079	0,00	74520
247	$C_2H_2 + OH = C_2H + H_2O$	7,530	2,00	14000
248	$C_2H_2 + OH = C_2H_2O + H$	13,041	0,00	7170
249	$C_2H_2 + O = HC_2O + H$	6,699	2,10	1570
250	$C_2H_2 + CH_3 = C_2H + CH_4$	11,255	0,00	17290
251	$C_2H_2 + O = C_2H + OH$	14,477	0,00	25000
252	$C_2H_2 + HO_2 = C_2H_2O + OH$	9,785	0,00	7950
253	$C_2H + OH = HC_2O + H$	13,301	0,00	0
254	$C_2H + OH = C_2 + H_2O$	7,602	2,00	8000
255	$C_2H + O = CO + CH$	13,161	0,00	460
256	$C_2H + O_2 = HCO + CO$	12,954	0,00	0
257	$C_2H + O_2 = 2CO + H$	12,954	0,00	0
258	$C_2H + O_2 = HC_2O + O$	11,778	0,00	0
259	$C_2H_2 + M = H + C_2H + M$	16,620	0,00	107000
260	$C_2H_2 + H = H_2 + C_2H$	7,760	3,20	500
261	$C_2H_2 + H = C_2H_3$	12,740	0,00	2392
262	$2C_2H_2 = H + C_4H_3$	13,000	0,00	43000
263	$C_2H_2 + O_2 = 2HCO$	12,600	0,00	28000
264	$NO_2 + H_2 = NO + H_2O$	9,400	0,00	18000
265	$NO_2 + M = NO + O + M$	16,200	0,00	65000
266	$N + NO_2 = 2NO$	12,550	0,00	0
267	$\mathbf{N} + \mathbf{NO}_2 = \mathbf{N}_2 + \mathbf{O}_2$	12,430	0,00	0
268	N + O + M = M + NO	16,500	0,00	0
269	$CH + N_2 = HCN + N$	12,196	0,00	17943
270	CH + NO = HCN + O	14,079	0,00	0
271	$HCN + OH = CN + H_2O$	12,956	0,00	10730
272	$CN + H_2 = HCN + H$	4,285	2,87	1629
273	HCN + O = CN + OH	6,141	2,10	6110
274	CN + OH = NCO + H	13,780	0,00	0
275	HCN + OH = HNCO + H	11,301	0,00	0
276	NCO + H = NH + CO	13,719	0,00	0
277	$HNCO + H = NH_2 + CO$	13,000	0,00	0
278	$NH + NO = N_2 + OH$	13,334	-0,23	0
279	$\mathbf{NH}_2 + \mathbf{H} = \mathbf{NH} + \mathbf{H}_2$	12,780	0,00	0
280	$\mathbf{N}\mathbf{H} + \mathbf{H} = \mathbf{N} + \mathbf{H}_2$	13,009	0,00	0
281	CH + NO = N + HCO	13,477	0,00	0

282	$NH_2 + O = NH + OH$	11,964	0,50	0
283	$CH_2 + NO = HCN + OH$	14,462	-0,69	759
284	$NH + N = N_2 + H$	11,799	0,50	0
285	$2\mathbf{N}\mathbf{H} = \mathbf{N}_2 + \mathbf{H}_2$	11,556	0,55	1900
286	$NH + OH = NO + H_2$	13,683	0,00	0
287	HCN + O = NCO + H	6,141	2,10	6110
288	HCN + O = NH + CO	6,141	2,10	6110
289	$HCN + OH = NH_2 + CO$	2,200	2,56	8999
290	NCO + O = NO + CO	13,625	0,00	0
291	CH + O = CO + H	13,756	0,00	0
292	$N_2O + NH = HNO + N_2$	12,301	0,00	5958
293	$NO_2 + NH_2 = N_2O + H_2O$	17,308	-1,70	0
294	$NO + HO_2 = NO_2 + OH$	12,320	0,00	-477
295	$NH_2 + O_2 = HNO + OH$	12,179	-0,39	36098
296	$CH_2 + O_2 = HCO + OH$	10,780	0,00	0
297	$2NO_2 = 2NO + O_2$	13,400	0,00	25000
298	$NO + NH_2 = N_2O + H_2$	13,000	0,00	33700
299	$NH_2 + O = NH + OH$	12,845	0,00	0
300	$HNO + H = NO + H_2$	11,649	0,72	655
301	$N + NO_2 = N_2 + 2O$	11,830	0,00	0
302	$N + O_2 = NO + O$	13,000	0,00	7500
303	$NO_2 + CO = NO + CO_2$	12,280	0,00	29260
304	$N + CO_2 = NO + CO$	11,280	0,00	3400
305	$N + NO = N_2 + O$	13,440	0,00	500
306	$O + NO_2 = O_2 + NO$	13,200	0,00	1160
307	$2NO = N_2 + O_2$	14,100	0,00	75600
308	$2N + M = N_2 + M$	16,040	-0,50	0
309	$O_2 + H_2O = HO_2 + OH$	14,800	0,00	73860
310	$O_2 + H_2 = 2OH$	12,403	0,00	39000
311	$H_2 + OH = H_2O + H$	13,382	0,00	5200
312	$O + H_2 = OH + H$	12,397	0,00	7700
313	$H + O_2 = OH + O$	14,300	0,00	16700
314	$2OH = H_2O + O$	13,159	0,00	0
315	$2H + M = H_2 + M$	15,559	0,00	0
316	$2O + M = O_2 + M$	15,258	0,00	0
317	$H + M + OH = H_2O + M$	16,559	0,00	0
318	O + H + M = OH + M	16,162	0,00	0
319	$CH_4 + O = CH_2 + H_2O$	13,311	0,00	7800

r				
320	$CO + OH = CO_2 + H$	12,461	0,00	5700
321	$CH_2 + CH_4 = {}_2CH_3$	13,000	0,00	0
322	$H + CH_3 = H_2 + CH_2$	14,860	0,00	15100
323	$CH_3 + CH_3 = C_2H_6$	12,300	0,00	0
324	$NH_3 + O = NH_2 + OH$	13,300	0,00	8882
325	$NH_2 + O = HNO + H$	14,800	-0,50	0
326	NH + O = N + OH	11,800	0,50	7948
327	NH + O = NO + H	11,800	0,50	0
328	HNO + O = NO + OH	11,700	0,50	1987
329	$\mathbf{N}\mathbf{H}_3 + \mathbf{O}\mathbf{H} = \mathbf{N}\mathbf{H}_2 + \mathbf{H}_2\mathbf{O}$	13,760	0,00	8057
330	$NH_2 + OH = NH + H_2O$	11,700	0,50	1987
331	$NH + OH = N + H_2O$	11,700	0,50	1987
332	NH + OH = HNO + H	12,000	0,50	1987
333	$N_2O + OH = N_2 + HO_2$	11,800	0,00	9935
334	$HNO + OH = NO + H_2O$	12,100	0,50	1987
335	$\mathbf{NH}_3 + \mathbf{HO}_2 = \mathbf{NH}_2 + \mathbf{H}_2\mathbf{O}_2$	12,400	0,00	23844
336	$NH_2 + HO_2 = NH_3 + O_2$	13,000	0,00	1987
337	$NH_2 + HO_2 = NH + H_2O_2$	13,000	0,00	1987
338	$NH + HO_2 = HNO + OH$	13,000	0,00	1987
339	$N + HO_2 = NO + OH$	13,000	0,00	1987
340	$N + HO_2 = NH + O_2$	13,000	0,00	1987
341	$NO + HO_2 = HNO + O_2$	11,300	0,00	1987
342	$HNO + HO_2 = NO + H_2O_2$	11,500	0,50	1987
343	NO + H = N + OH	14,420	0,00	50410
344	$NO_2 + H = NO + OH$	14,540	0,00	1470
345	$N_2O + H = N_2 + OH$	13,880	0,00	15101
346	HNO + N = NO + NH	13,000	0,00	1987
347	$NO + NH = N_2O + H$	12,030	0,00	457
348	$NO + NH_2 = N_2 + H_2O$	19,800	-2,50	1888
349	$NO_2 + NH = HNO + NO$	11,000	0,50	3974
350	$\mathbf{NH}_2 + \mathbf{O}_2 = \mathbf{NH} + \mathbf{HO}_2$	14,000	0,00	49675
351	$NH_2 + HNO = NH_3 + NO$	11,700	0,50	994
352	$NH + O_2 = HNO + O$	13,000	0,00	11922
353	HNO + M = H + NO + M	16,300	0,00	48682
354	$NH_3 + M = NH_2 + H + M$	16,400	0,00	93786
355	$\mathbf{N}\mathbf{H}_3 + \mathbf{M} = \mathbf{N}\mathbf{H} + \mathbf{H}_2 + \mathbf{M}$	14,800	0,00	93389
356	$NH_2 + M = NH + H + M$	23,500	-2,00	91402
357	NH + M = N + H + M	21,500	-2,00	83454

358	$NH_3 + H = NH_2 + H_2$	14,100	0.00	21499
359	$H_2S + M = HS + H + M$	14,301	0,00	76600
360	$H_2S + H = HS + H_2$	13,079	0,00	1710
361	$H_2S + O = HS + OH$	12,633	0,00	3322
362	$H_2S + OH = HS + H_2O$	13,146	0,00	866
363	$2HS = H_2S + S$	14,000	0,00	1430
364	$HS + H = H_2 + S$	14,707	0,00	21
365	HS + O = SO + H	14,544	0,00	642
366	HS + O = S + OH	11,799	0,50	8060
367	$HS + S = S_2 + H$	13,146	0,00	478
368	$S + O_2 = SO + O$	11,799	0,50	0
369	S + OH = SO + H	13,857	0,00	642
370	$S_2 + O = SO + S$	11,799	0,50	0
371	$2S + M = S_2 + M$	18,000	-1,00	0
372	$SO + O_2 = SO_2 + O$	11,255	0,00	5600
373	$SO + OH = SO_2 + H$	13,255	0,00	0
374	$SO + O + M = SO_2 + M$	22,079	-1,80	0
375	$SO + S + M = S_2O + M$	22,079	-1,80	0
376	$S_2 + OH = S_2O + H$	13,255	0,00	0
377	$SO + SO = SO_2 + S$	11,518	0,00	2250
378	$SO + S_2 = S_2O + S$	11,518	0,00	2250
379	$H_2S + M = H_2 + S + M$	24,204	-2,61	44841
380	$H_2S + SO_2 = H_2 + S + SO_2$	25,158	-2,61	44841
381	$H_2S + H_2O = H_2 + S + H_2O$	25,158	-2,61	44841
382	$H_2S + S = HS_2 + H$	13,301	0,00	7400
383	$HS + OH = H_2O + S$	13,000	0,00	0
384	$2HS = S_2 + H_2$	12,000	0,00	0
385	$S_2 + H + M = HS_2 + M$	16,000	0,00	0
386	$HS_2 + H = S_2 + H_2$	7,079	2,10	700
387	$HS_2 + O = S_2 + OH$	7,875	1,75	2900
388	$HS_2 + OH = S_2 + H_2O$	12,431	0,00	0
389	$HS_2 + S = S_2 + HS$	13,301	0,00	7400
390	$SO_3 + H = HO_2S + O$	5,398	2,92	50300
391	$SO_3 + O = SO_2 + O_2$	12,301	0,00	20000
392	$SO_3 + SO = {}_2SO_2$	12,000	0,00	5033
393	$SO + O + M = SO_2 + M$	13,505	0,00	0
394	$SO + O + SO_2 = 2SO_2$	14,459	0,00	0
395	$SO + \overline{O + H_2O} = SO_2 + H_2O$	14,459	0,00	0

396	$SO_2 + O + M = SO_3 + M$	10,964	0,00	2384
397	$S + CH_4 = HS + CH_3$	14,778	0,00	23998
398	$H_2S + CH_3 = CH_4 + HS$	11,255	0,00	2339
399	$C + H_2 S = CH + HS$	14,079	0,00	8842
400	COS + O = CO + SO	13,286	0,00	4628
401	CS + O = CO + S	14,211	0,00	1510
402	COS + M = CO + S + M	14,155	0,00	61001
403	$COS + O = CO_2 + S$	13,699	0,00	10989
404	$HS + O_2 = SO + OH$	12,000	0,00	10000
405	CH + SO = CO + HS	13,000	0,00	0
406	$SO_3 + S = SO + SO_2$	11,709	0,00	0
407	S + NH = HS + N	13,000	0,00	0
408	NH + SO = NO + HS	13,479	0,00	0
409	$2SO_2 + O = SO_3 + SO_2$	11,918	0,00	2384
410	$SO_2 + O + H_2O = SO_3 + H_2O$	11,918	0,00	2384
411	$SO_2 + OH + M = HO_3S + M$	12,857	0,00	715
412	$2SO_2 + OH = HO_3S + SO_2$	13,812	0,00	715
413	$SO_2 + OH + H_2O = HO_3S + H_2O$	13,812	0,00	715
414	$SO_2 + OH = HO_2S + O$	8,591	1,89	76000
415	$SO_2 + OH = SO_3 + H$	2,690	2,69	23850
416	$SO_2 + CO = SO + CO_2$	12,431	0,00	48300
417	$O_2S + M = SO_2 + M$	14,114	0,00	3600
418	$O_2S + SO_2 = SO_3 + SO$	12,415	0,00	2430
419	SO + M = S + O + M	14,602	0,00	107000
420	$SO + OH + M = HO_2S + M$	12,204	0,50	-400
421	$SO + OH + SO_2 = HO_2S + SO_2$	13,158	0,50	-400
422	$SO + OH + H_2O = HO_2S + H_2O$	13,158	0,50	-400
423	$2SO = SO_2 + S$	12,301	0,00	4000
424	$H_2SO = H_2S + O$	28,690	-6,66	71700
425	$HO_2S + M = SO_2 + H + M$	10,230	0,80	46933
426	$HO_2S + SO_2 = SO_2 + H + SO_2$	11,185	0,80	46933
427	$HO_2S + H_2O = SO_2 + H + H_2O$	11,185	0,80	46933
428	$SO + NO_2 = SO_2 + NO$	12,926	0,00	0
429	$C + SO_2 = CO + SO$	13,619	0,00	0
430	$HSO + H = H_2OS$	20,398	-3,14	920
431	HSO + H = HS + OH	19,690	-1,86	1560
432	$HSO + H = H_2O + S$	9,204	1,37	-340
433	$HSO + H = H_2SO$	17,255	-2,47	50

434	$HSO + H = H_2S + O$	6,041	1,03	10400
435	$HSO + H = SO + H_2$	13,000	0,00	0
436	$HSO + O + M = HSO_2 + M$	19,041	-1,73	-50
437	$HSO + O = SO_2 + H$	14,653	-0,40	0
438	$HSO + O + M = HO_2S + M$	19,839	-1,61	1590
439	HSO + O = HOS + O	8,681	1,02	5340
440	HSO + O = OH + SO	13,146	0,15	300
441	$HSO + OH = H_2O_2S$	28,716	-5,44	3170
442	$HSO + OH = HO_2S + H$	7,724	1,57	3750
443	$HSO + OH = SO + H_2O$	9,230	1,03	470
444	$HSO + O_2 = SO_2 + OH$	12,000	0,00	10000
445	$HO_2S + M = HOS + O + M$	30,398	-4,80	119000
446	$HS + HO_2 = HSO + OH$	12,000	0,00	0
447	$HS + O_2 = HSO + O$	13,279	0,00	17925
448	SO + H + M = HSO + M	15,699	0,00	0
449	$HSO + NO_2 = HO_2S + NO$	12,763	0,00	0
450	$H_2OS = HS + OH$	39,447	-8,75	75200
451	$H_2OS = H_2O + S$	29,763	-5,60	54500
452	$H_2OS = H_2S + O$	16,991	-3,40	86500
453	$HO_2S + M = HSO_2 + M$	9,000	1,03	50000
454	$HO_2S + SO_2 = HSO_2 + SO_2$	9,954	1,03	50000
455	$HO_2S + H_2O = HSO_2 + H_2O$	9,954	1,03	50000
456	$HO_2S + H = SO_2 + H_2$	13,477	0,00	0
457	$HO_2S + OH = SO_2 + H_2O$	12,000	0,00	0
458	$HO_2S + O_2 = HO_2 + SO_2$	12,000	0,00	1000
459	$HSO_2 + H = SO_2 + H_2$	13,477	0,00	0
460	$HSO_2 + OH = SO_2 + H_2O$	13,000	0,00	0
461	$HSO_2 + O_2 = HO_2 + SO_2$	13,000	0,00	0
462	$HSO_2 + M = SO_2 + H + M$	11,301	0,90	18360
463	$HSO_2 + SO_2 = SO_2 + H + SO_2$	12,255	0,90	18360
464	$HSO_2 + H_2O = SO_2 + H + H_2O$	12,255	0,90	18360
465	$HO_3S = HO_2S + O$	18,732	-2,34	106300
466	$HO_3S = SO_3 + H$	18,146	-2,91	54900
467	$HO_3S + H = SO_2 + H_2O$	12,000	0,00	0
468	$HO_3S + O = SO_3 + OH$	12,699	0,00	0
469	$HO_3S + OH = SO_3 + H_2O$	12,000	0,00	0
470	$HO_3S + O_2 = HO_2 + SO_3$	11,892	0,00	656
471	$H_2O_2S = HO_2S + H$	30,866	-5,89	73800

472	$H_2O_2S = SO + H_2O$	24,079	-3,59	59500
473	$H_2O_2S + H = HO_2S + H_2$	12,000	0,00	0
474	$H_2O_2S + O = HO_2S + OH$	12,699	0,00	0
475	$H_2O_2S + OH = HO_2S + H_2O$	12,000	0,00	0
476	$HO_3S + H = SO_3 + H_2$	12,000	0,00	0
477	$HS_2 + H + M = H_2S_2 + M$	16,000	0,00	0
478	$H_2S_2 + H = HS_2 + H_2$	7,079	2,10	700
479	$H_2S_2 + O = HS_2 + OH$	7,875	1,75	2900
480	$H_2S_2 + OH = HS_2 + H_2O$	12,431	0,00	0
481	$H_2S_2 + S = HS_2 + HS$	13,301	0,00	7400
482	HS + NO = SN + OH	13,000	0,00	17686
483	NO + S = SN + O	12,000	0,50	34773
484	$HS + NH = SN + H_2$	14,000	0,00	0
485	SO + N = NO + S	11,810	0,50	2007
486	HS + N = SN + H	11,800	0,50	8008
487	$SN + NO = N_2 + SO$	10,257	0,00	0
488	$SN + O_2 = SO + NO$	8,477	0,00	0
489	$SN + NO_2 = S + 2NO$	15,609	-0,98	0
490	$N + SN = N_2 + S$	11,799	0,50	0
491	SN + O = SO + N	11,800	0,50	8008
492	\rightarrow H ₂ O	0	0,00	0
493	$\rightarrow CH_4$	0	0,00	0
494	$\rightarrow C_6 H_6$	0	0,00	0
495	\rightarrow CO	0	0,00	0
496	$\rightarrow CO_2$	0	0,00	0
497	$\rightarrow O_2$	0	0,00	0
498	\rightarrow H ₂ S	0	0,00	0
499	$0,5O_2 \rightarrow 0,5CO_2$	0	0,00	0
500	$0,5O_2 \rightarrow CO$	0	0,00	0
501	$0,5CO_2 \rightarrow CO$	0	0,00	0
502	$0,5O_2 \rightarrow 0,5O_2 + AL_2O_3^*$	0	0,00	0
503	$0,5O_2 \rightarrow 0,5O_2 + SI1O_2^*$	0	0,00	0
504	$CACO_3 \rightarrow CAO + CO_2$	0	0,00	22908
505	$CAO + SO_2 + 0,5O_2 \rightarrow CASO_4$	0	0,65	36600
506	$CASO_4 \rightarrow CAO + SO_2 + 0,5O_2$	0	0,00	0

Статья поступила в редакцию 15 мая 2012 г.